

SOME SIMPLE OBSERVATION ON GENERALISED LATTICE

S JOSEPH^{*}, J ARIVUKKARASU^{**}

ABSTRACT

This paper is a study about somesimple observation on generalised lattice.

KEYWORDS: Graded Poset, Directed Set, Generalisedlattice.

INTRODUCTION

In this paper, we study some simple observation on generalised lattice. Swamy and murty [2] introduced the concept of a generalised lattice and elaborately studied by Kishore and murty [3]

Let A be a finite subset of P.

Define

L (A) = { $x \in P / x \le a$ for all $a \in A$ } and

U (A) = { $x \in P / a \le x$ for all $a \in A$ } then

L (P) = {L(A) / A is a finite subset of P} and

U (P) = {U(A) / A is a finite subset of P} are semilattices under set inclusion.

GENERALISED MEET SEMILATTICE [2]

P is said to be a generalised meet lattice if for every non empty finite subset A of P, there exists a non-empty finite subset B of P such that, $x \in L(A)$ if and only if $x \le b$ for some $b \in B$.

It is observed that if P is a generalised meet (join)

semilattice, then for any $L(A) \in L(P)$ $[U(A) \in U(P)]$ there exists a unique finite subset B of P such that $L(A) = \bigcup_{b \in B} L(P)$

 $\left[U(A) = \bigcup_{b \in B} U(P) \right]$ and the elements of B are mutually incomparable.

GENERALISED LATTICE [2]

P is said to be a generalised lattice if it is both generalised meet and join semilattice.

REMARK [3]

Clearly every finite poset which is directed below (above) is a generalised meet (join) semilattice and every meet (join) semilattice is a generalised meet (join) semilattice.

In general every lattice as well as every finite directed poset is a generalised lattice. The posets in figures: 1 and 2 are generalised lattices which are not lattices.

^{*}DMI St. Eugene University, Lusaka, Zambia, Africa.

^{**}PGP College of Engineering and Technology, Namakkal, Tamil Nadu, India.
Correspondence E-mail Id: editor@eurekajournals.com

Some Simple Observation on Generalised Lattice S Joseph

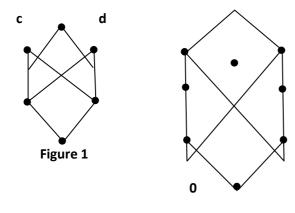


Figure 2

THEOREM: 1.1[2]

A generalised lattice is a lattice if and only if it is either a meet semilattice or a join semilattice.

DIRECTED SET [4]

A poset P is called a directed set if for any a, $b \in$ P there exists $x \in$ P such that $a \le x$ and $b \le x$.

GRADED POSET [4]

A poset P is graded if all maximal chains in P have the same length.

REMARK [4]

Any directed poset be a graded but converse need not be true.

THEOREM: 1.2

Every finite graded poset be a generalised lattice.

Proof:

By the remark 1.5, obviously the statement is true.

THEOREM: 1.3

Any generalised lattice need not be graded.

PROOF

For example see Fig [2] is a generalised lattice but intervals [0, c] and [0, d] are all maximal chains have not the same length; therefore any generalised lattice need not be graded.

REFERENCES

- [1]. Gratzer. G., General Lattice Theory, Birkhausar Verlag Basel, 1978.
- [2]. M.K.Murty, U.M. Swamy., Distributive partially ordered sets, The Aligarh Bull. of Math.Vol.8, 1978.
- [3]. P.R.K.Kishore, M.K. Murty, V.Sri ramani and M.D.P. Padnaik., On generalised lattices, South East Asian Bull. Math. 33(5) (2009), 1091-1104.
- [4]. Santhi. V.K. Topics in Commutative Algebra, PhD thesis, Madurai Kamaraj University, 1992.