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Abstract 

The study examined univariate and bivariate time series forecast of 
Nigerian stock exchange variables: All Share Index (ASI) and the 
External Reserves (ER) which comprise of monthly value from 1985 to 
2018 of them both. It filled the lacuna by explicitly modeling and 
forecasting stock returns in Nigeria using the univariate ARIMA and 
bivariate VAR models. The monthly and yearly means plots were done, 
to have a better understanding of the series behaviours. The order of the 
regular autoregressive and moving avenge model that is necessary to 
adequately represent the time series model was determined. The series 
plots showed that ASI series is integrated of order 1 without seasonality 
while ER series is integrated of order 1 with the seasonality of order 12. 
A suitable ARIMA and VAR Model were obtained for both series using 
model selection criteria (MSC) and the models were used to generate 
forecasts. The univariate and bivariate model forecasts were compared 
and the result shows that the bivariate model is better to predict the two 
series than the univariate model from the result of forecast accuracy 
measures (i.e. MAPE and MSE).  

Keywords: Nigerian stock exchange variables, ARIMA Model, 
Vector Autoregressive (VAR) Model, Forecast Accuracy Measure, 
Model Selection Criteria. 

1. Introduction 

Forecasting is a very global important part of econometric analysis. How do we forecast 
economic variables, such as gross domestic product (GDP), inflation, exchange rates, stock 
process, and unemployment rates?. Other economic variables problems involved in 
forecasting prices of financial assets, such as stock process and exchange rate are of great 
concern (Ali, 2013). It is no longer news that the global economic crisis and COVID 19 
pandemic has brought about a shortage of financial resources and a general downtown in 
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stock prices across the globe. Therefore forecasting stock prices will help provide a way to 
expect and maybe avoid the risk of a large change in prices. 

Time series analysis is a statistical technique that deals with time series data, or trend 
analysis. Time series data means that data is in a series of particular periods or intervals. The 
data is considered in three types: (1) Time series data: A set of observations on the values that 
a variable takes at different times. (2) Cross-sectional data: Data of one or more variables, 
collected at the same point in time. (3) Pooled data: A combination of time series data and 
cross-sectional data. The Stock exchange market (All Share Index (ASI) and External 
Reserve (ER) series) has become one of the well-known investments in the recent past due to 
its higher returns. It has become a great part of the global economy as the exchange market 
influences both the personal and corporate lives and the economic life of a country. The 
Nigerian stock market forecasting is known more by its failure than success since its prices 
reveal the judgment and what investors expect base on the available information. Base on 
this, the accuracy in forecasting the stock market prices or predicting the trend accurately is 
of importance for anyone who wishes to invest in the dynamic global economy. This study 
exclusively deals with the time series forecasting model and in particular the Autoregressive 
Integrated Moving Average (ARIMA) models which were described by Box-Jenkins. The 
paper considered the components of the Nigerian stock exchange (ASI and ER) which 
comprises monthly and yearly values for the long period of January 1985 to December 2018.  

The aim of the paper to compare the forecasts obtained from time series models (ARIMA and 
VAR model) using accuracy measures of forecast values for optimum economic decisions. 
The specific objectives of the study are to (1) describe the series plots, yearly mean plots, and 
monthly mean plots and obtain the stationarity of the series. (2) determine the year with the 
highest ASI and ER rate. (3) obtained a suitable model to fit the Nigerian stock exchange 
series (All Share Index and External Reserves). (4) obtained the forecasts from the obtained 
models considered (ARIMA and VAR model) covering 2018-2020 using accuracy measures 
of forecast values. 

The paper is limited to ARIMA and VAR models, thus ARIMA model pointing to a single 
time series given that the major objective of time series economic modeling is to identify the 
relationship between econometrics variables and use them to estimate and forecast the 
variables. 

2 Literature 

Over the years, economists and financial analysts have constantly maintained that a market 
price that is not regulated is the best and stick to prove the true scarcity of a commodity or its 
worth. It is easy for one to evaluate the Nigerian stock market (NSM) performance by the use 
of a stock market index or returns. The stock market returns can be predicted from a variety 
of financial and macroeconomic variables which has been an attraction for equity investors. 
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The stock market index has attracted great attention as a way of measuring a sector of the 
stock market. The investing public has to a large extent an important indicator used by a 
benchmark by which investor or fund management compares the returns of his portfolio 
(Senol, 2012). A stock market index is a tool used by investors and financial managers to 
describe the market and to compare the return on a specific investment. A stock index is a 
method by which the value of a section of the stock market is measured. A market index 
tracks down the performance of a particular basket of stocks considered to stand in place of a 
particular market sector of the Nigerian economy. Thus, the need to predict the stock price to 
meet the basic objectives of operators and investors of the stock market for gaining more 
benefits cannot be overemphasized. This issue has brought to focus the attention of 
statisticians and researchers all over the world. The stock market is affected by numerous 
factors and this has created high controversy in the field.  

ARIMA modeling has been successfully used in various stock-market activities (e.g price 
indices, migration rate, rate of currency exchange, etc). Naylor et al., (2012) examined the 
ARIMA model in contrast to the Whartons econometric model and it was revealed that 
ARIMA models were better and accurate in forecasting than that of Whartons models. A 
comparison of values and prices of commodities has always been a difficult task in economic 
situations. Many authors among whom are: Lirby (2007), Malkeil (2013), and Durbin (2012) 
have compared, estimated, and forecasted for the future stocks and commodities dealing with 
auto-correlation. 

A successful time series forecasting depends on an appropriate model fitting. A lot of efforts 
have been done by researchers over many years for the development of efficient models to 
improve forecasting accuracy. As a result, various important time series forecasting models 
have been evolved in literature. One of the most popular and frequently used stochastic time 
series models is the Autoregressive Integrated Moving Average (ARIMA). ARIMA model 
has subclasses of other models, such as Autoregressive (AR), Moving Average (MA), and 
Autoregressive Moving Average (ARMA) models. For seasonal time series forecasting, Box 
and Jenkins (1976) had proposed a quite successful variation of ARIMA model, viz. the 
Seasonal ARIMA (SARIMA). The popularity of the ARIMA model is mainly due to its 
flexibility to represent several varieties of time series with simplicity as well as the associated 
Box-Jenkins methodology for the optimal model building process.  

Forecasting stock returns is an important approach to understanding future stock price 
behavior of the Nigeria Stock Exchange of the All Shares Index. Accurate stock price 
forecasts would not only reduce uncertainty in stock prices but also provide a way to form 
expectations and perhaps avoid the risk of a large adverse change in stock prices. The stock 
price forecast is important for deciding both the timing of stock investment and the relative 
investment desirability among the various sectors in the market (Fischer and Jordan, 2005). 
According to Sims (1980), if there is true simultaneity among a set of variables, they should 
all be treated on an equal footing; there should not be any a priori distinction between 
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endogenous and exogenous variables. It is the spirit that Sims developed his VAR model. The 
Vector Autoregressive (VAR) model is an approach in modeling dynamics among a set of 
variables. The approach usually focuses on the dynamic of multiple time series. Vector 
Autoregressive(VAR) model is also an independent reduced form dynamic model that 
involves constructing an equation that makes each endogenous variable a function of their 
past values and past values of all other endogenous variables. 

3.  Materials and Methods 

The study seeks to compare univariate and bivariate time series forecast of the Nigerian stock 
exchange, using the univariate and bivariate ARIMA and VAR model. The Box-Jenkins 
approach of model identification, parameter estimation, and diagnostic checking will be 
adopted in the analyses. The paper is restricted to the Nigerian Stock Exchange. It is also 
restricted to ASI and ER data. The secondary data used for the study were collected from the 
Central Bank of Nigeria (CBN) Statistical Bulletin. It is the monthly data of All Share Index 
(ASI) and External Reserve (ER) on the Nigeria Stock Exchange ranging from 1985 to 2018.  

3.1 Stationary and non-stationary time series 

A time series is said to be stationary if the statistical property e.g. the mean and variance are 
constant through time. If for ݊ values of observations ݔଵ,ݔଶ,ݔଷ,…ݔ௡ of a time series that 
fluctuate with constant variation around a constant mean µ, then the time series is stationary 
and all processes that do not possess these properties is called “non-stationary”. A non-
stationary time series can be made stationary by transforming the time series into a series of 
stationary time series values (differencing). 
3.2 Mixed Autoregressive moving average (ARMA) model 

 Box and Jenkins (1976), noted that the mixed autoregressive moving average model is the 
combination of (ݍ)ܣܯand (݌)ܴܣ. Let's say that ܺ௧ is the deviation from the mean ߤ, then 
 model can be written as (ݍ,݌)ܣܯܴܣ

௧ݔ  − ௧ିଵݔ߶ − ߶ଶݔ௧ିଶ −⋯−߶௣ݔ௧ି௣ = ௧ߝ − ௧ିଵߝߠ − ௧ିଶߝଶߠ −⋯− ௧ି௤ߝ௤ߠ .            (3.1) 

Thus, 

௧ݔ(ܤ)߶  =  ௧                   (3.2)ߝ(ܤ)ߠ

The equation (3.2) can be written as 

௧ݔ	  = ߶ିଵ(ܤ)ߝ(ܤ)ߠ௧ 

 = ఏ(஻)
థ(஻)

௧ߝ = ଵିఏభ஻ି⋯ିఏ೜஻೜

ଵିథభ஻ି⋯థ೛஻ು
 ௧                    (3.3)ߝ
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The ARIMA model is based on prior values in the autoregressive terms and the error made by 
the previous prediction. The order of ARIMA model is given by ݌,  represents ݌ ,where ݍ,݀
the autoregressive component, ݀ stands for the differencing to achieve stationarity and ݍ is 
the order of the moving average. 

Seasonal Autoregressive Integrated Moving Average (SARIMA) model applies to time series 
with seasonal and non-seasonal behavior. SARIMA model has a multiplicative and additive 
part. The multiplicative is so applied because of the assumption that there exists a significant 
parameter resulting from the multiplication between nonseasonal parameters. By the use of ∇ 
and ܤ notation, ARIMA (p, d, q) model can be written as 

௧ݓ(ܤ)߶ =  ௧                                (3.4)ߝ(ܤ)ߠ

where the polynomial in ܤ is given as 

(ܤ)߶ = 1 −߶ଵ(ܤ) −⋯− ߶௣ܤ௣ and (ܤ)ߠ = 1 − (ܤ)ଵߠ −⋯−  ௣ܤ௤ߠ

The paper focused on the multiplication model because of the assumption that there is a 
major parameter between the non-seasonal and seasonal models. This is denoted by 
(ݍ,݀,݌)	ܣܯܫܴܣ ×  written as (ܳ,ܦ,ܲ)

߶௣(ܤ)߶௉(ܤ௦)∇ୢ∇ୱୈz୲ = θ୯(B)θ୕(Bୱ)ε୲ (3.5) 

where  

(ܤ)߶ = 1 −߶ଵܤ − ߶ଶܤଶ −⋯߶௣ܤ௣; Φ(ܤ) = 1 −Φଵ, ௦ܤݏ − Φଶ, ଶ௦ܤݏ −⋯−Φ௣,  ௣ܤݏ

∇ௗ= 1 − ܤ − ଶܤ −⋯− =ௗ; ∇௦஽ܤ 1 − ௦ܤ − ଶ௦ܤ ଶ஽ܤ−⋯−  

(ܤ)ߠ = 1 − ܤଵߠ − ଶܤଶߠ −⋯− (௦ܤ)௤ and Θܤ௤ߠ = 1 − Θଵ, ௦ܤݏ − Θଶ, ଶ௦ܤݏ −⋯−Θொ ,  ொௌܤݏ

where ݖ௧	 is the time series at period ߝ ,ݐ௧stands for the white noise, ܤ represents the backshift 
operator, ܵ is the duration of the seasonal model which could be weekly, quarterly, or yearly, 
 is the autoregressive parameter, ܲ is the seasonal autoregressive parameter, ݀ is the order ݌
of the monthly difference(quarterly difference), ܦ is the order of seasonal difference, ݍ is the 
moving average parameter and ܳ is the seasonal moving average parameter. 

 Box and Jenkins (1976) proposed four steps in developing a linear time series which are 
Model identification, Estimation of parameters, Diagnostic Checking, and Forecasting  

3.3 Vector Autoregressive (VAR) Model 

The basic ݌-lag Vector autoregressive VAR(݌) the model has the form. 

௧ܻ = ܥ + 	Πଵ ௧ܻିଵ + 	Πଶ ௧ܻିଶ + 	… + 	Π௣ ௧ܻି௣ + ε௧ ݐ	 = 1, … ,ܶ.              (3.6) 
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where  

௧ܻ = ൫ݕଵ௧ ݊) ௡௧൯ is anݕ…,ଶ௧ݕ, × ݊) vector of time series variable, 

Π = (݊ × ݊)	coefficient matrices 

݊) ௧ is anߝ × 1) unobserved zero mean with white noise vector process (serially uncorrelated 
and independent) with invariant covariance matrix Σ 

The model can be written in the matrix form as 

⎝

⎜
⎛

ଵ௧ݕ
ଶ௧ݕ

.

.
⎠௡௧ݕ

⎟
⎞

=

⎝

⎜
⎛

ܿଵ
ܿଶ
.
.
ܿ௡⎠

⎟
⎞

+ 	

⎝
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⎞

  (3.7) 

3.4 Model Selection Criteria (MSC) 

The AR and MA order p and q have to be determined by examining the regular and seasonal 
autocorrelation and partial autocorrelation function; ACF, PACF, SACF, and SPACF for Yt. 

before an ARMA(p, q) is estimated. The idea is to fit all ARMA(p,q) models with order p ≤ 
pmax and q ≤ qmax and choose the value of p and q which minimizes some model selection 
criteria. For ARMA(p, q), the model selection criteria are given by 

,݌)ܥܵܯ (ݍ = ൯(ݍ,݌)ଶߪ൫݊ܮ + ்ܿ  (3.8)                            (ݍ,݌)߮.

where ,݌)ଶߪ  is a sequence indexed by the sample size T, and ்ܿ	(௧ߝ)is the MLE of var (ݍ
,݌)߮  .is a penalty function that penalizes large ARMA(p, q) model (ݍ

3.5 Information Criteria 

The three most common information criteria for selection models are the AkaikeInformation 
Criteria (AIC), Schwarz-BayesianInformation Criteria (BIC), and Hannan-QuinnInformation 
Criteria. 

3.6 Akaike Information Criteria 

The AIC is a measure of the relative goodness of fit of a statistical model. The AIC value is 
given by 
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  pRSSAIC 2/ln                      (3.9) 

where T is the number of data points (observations); ln is the natural logarithm; RSS is the 
residual sum of square (ߪଶ) or the error variance of the model which is an unbiased estimator 
of the true variance and p is the number of parameters in the model. (Akaike, (1983)) 

3.7 Schwartz-Bayesian Information Criteria (SBIC or BIC) 

The BIC is a model selection criteria that involves selections among a finite set of models. 
The BIC is given by 

  )ln(/ln  pRSSBIC                  (3.10) 

where the parameters are defined as previous Equation (2.10) 

3.8 Forecast Accuracy Measures (FAM) of the Estimated Values 

To gauge the accuracy of our estimates, the estimated errors will be used to compare the two 
models forecasts. This is done by subtracting the estimated forecast values (EFV) from the 
original values or [actual values (AV)] to obtain the estimate errors. The estimated error is 
denoted by 

viEFVVe iii ...,2,1,                 (3.11) 

where v is the number of forecast values 

Then accuracy measures considered in this paper are: Mean Error (ME), Mean Absolute 
Error (MAE), and Mean Square Error (MSE). 

3.8.1  Mean Error (ME) 

The first descriptive Statistics of Error used is called the Mean Error. It indicates the 
deviation between the actual values and estimates, Mean Error is given as  

ME = 










v

i
ie

v 1

1

                                                                                                                 
(3.12) 

3.8.2 Mean Square Error (MSE) 

MSE also indicates the fluctuations of the deviations and it can be calculated as  

MSE = 










v

i
ie

v 1

21                                                    (3.13) 

 



                           International Journal of Transformation in Applied Mathematics & Statistics 
Vol. 3, Issue 2 – 2020 

ISSN: 2581-7620 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 8 

3.8.3 Mean Absolute Percentage Error (MAPE) 

This accounts for the percentage of deviation between the actual values and estimates. This 
can be obtained as  

MAPE =  01100
1













 


i

v

i i

i AV
AV
e

v                                      
(3.14) 

4.  Results and Discussion  

The section is divided into four parts: (1) Plot description and stationarity; (2) ARIMA model 
identification, (3) the VAR model identification, and (4) ARIMA and VAR model forecast 
comparison. 

4.1 Monthly and Yearly Means Plots, the Series of the Data Sets 

The monthly and yearly means of the series plots (All Share Index and External Reserves) 
were done to examine the relationships, trend component, and seasonality effect, if present in 
the data sets. Figure 4.1 shows the monthly means behaviour of the ASI, where the peak is in 
June, and the least exchange rate is in January. Also, the monthly mean series shows an 
increase from the beginning (or swing upward); January to June. Then, randomly show a 
downward movement from July to December. The yearly means plot in Figure 4.2 shows an 
upward trend and then downward movements in a random manner. There seem to be 
evidence of a peak in the year 2007 and depressions almost all through the early periods. ASI 
series in Figure 4.3 shows an upward trend from the year 1985 to 2007, then randomly shows 
downward movements from 2007 to 2018. Figure 4.4 shows the monthly means behaviour of 
the ER, where the peak is in March, and the least external reserves rate is in December. The 
yearly means plot in Figure 4.5 is similar to Figure 4.2, which shows an upward trend and 
then downward movements in a random manner in the last years. The ER series in Figure 3.6 
is similar to Figure 4.3, which shows an upward trend from the year 1985 to 2007, then 
randomly shows downward movements from 2007 to 2018.  

 
Figure 4.1.Monthly Means Plot of All Share Index 
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Figure 4.2.Yearly Means Plot of All Share Index 

 
Figure 4.3.Series Plot of All Share Index 

 
Figure 4.4.Monthly Means Plot of External Reserves 
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Figure 4.5.Yearly Means Plot of External Reserves 

 
Figure 4.6.Series Plot of External Reserves 

4.2 Stationary of the Data Sets and ARIMA Model Building  

The plots in Figures 4.7 and 4.8 are the first difference series of ASI and ER respectively. 
The plots show a sine wave pattern in nature with mean zero and constants variance. The 
series is now stationary after the first difference (or behaves much better).  

 
Figure 4.7.First Difference of the All Share Index series 
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Figure 4.8.First Difference of ER series 

Parameters Estimates and ARIMA Model Identification  

The ACF and PACF plots of the difference series for both ASI and ER series are shown in 
Figures 4.9 and 4.10 for ASI and Figure 4.11 and 4.12 for ER respectively. The ACF plot in 
Figure 4.9 shows spikes at lags 1 and 2 indicating AR(p) process (where p =1 or p =2). The 
PACF plots in Figure 4.10 shows a cut off at lag 2 and indicating MA(q), where q=1 or q=2. 

However, various ARIMA(p, q) models were fitted to the All Share Index series with 
respective residuals as white noise and it is summarized in Table 4.1. The model selection 
criteria used to select the best model amongst models was AIC and BIC and also detailed out 
in Table 4.1. Hence, ARIMA (1,1,1) was identified for the ASI series in Table 4.1 and was 
used to forecasts for 2019.  

 
Figure 4.9.ACF for First Difference ASI Series 
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Figure 4.10.PACF for First Difference ASI Series 

Similarly, in the ACF plot in Figure 4.11 for ER, spikes dies down extremely slowly 
indicating the AR(p) process (where p =1 or p =2). Also, PACF plots for ER spikes are close 
to white noise except lags 1 or 2 cut on, which is also an indication of MA(q), where q=1 or 
q=2. Also, the early lags indicated that these series have a seasonal variation of order 12. 
Then, various SARIMA(P, D, Q) models of order 12 were fitted to the ER series with 
respective residuals as white noise and its summarized in Table 4.2. The model selection 
criteria used to select the best model amongst models is AIC and BIC is also detailed in Table 
4.2. Hence, ARIMA (0, 1, 0)(0, 0, 1)12 was identified for ER series in Table 4.2 and was used 
to forecasts for 2019.  

 
Figure 4.11.ACF for First Difference ER Series 
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Figure 4.12.PACF for First Difference ER Series 

 
Figure 4.13.Bivariate Plot of ASI on ER 

Figure 4.13 shows the Bivariate plot of ASI in ER. The plot indicates that there is a 
correlation between the two series. Also, Figure 4.14 shows the Bivariate plot of ER on ASI. 
The plot also indicates a correlation between the two series. Thus, there is a strong 
relationship between ASI and ER series. 

4.3 Identification of VAR Models and Its Parameters Estimates  

The two series plotted in Figure 4.13 and 4.14 are correlated, also from the correlation 
matrix, it is obvious the ASI and ER series are significantly correlated, using Minitab 17 
statistical software (Pearson correlation of ASI and ER = 0.909 (p-value = 0.000). Hence, the 
series can be considered as a bivariate series using VAR Model. 

Table 4.1. and Table 4.2 (end of the paper) 

Lag

Pa
rt

ia
l A

ut
oc

or
re

la
ti

on

65605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Partial Autocorrelation Function for EXTERNAL RESERVESDiff_1
(with 5% significance limits for the partial autocorrelations)

0.00

20000.00

40000.00

60000.00

80000.00

- 10,000.00 20,000.00 30,000.00 40,000.00 50,000.00 60,000.00 70,000.00 

AL
L S

H
AR

E 
IN

DE
X

EXTERNAL RESERVES 

ALL SHARE INDEX



                           International Journal of Transformation in Applied Mathematics & Statistics 
Vol. 3, Issue 2 – 2020 

ISSN: 2581-7620 
 

 
© Eureka Journals 2020. All Rights Reserved.  Page 14 

 
Figure 4.14.Bivariate Plot of External Reserves on All Share Index 

4.3.1 ASI against ER Series Parameters Estimates and VAR Model Identification 

A)  VAR Model: Lag Length Selection  

The lag length for the VAR(p) model may be determined using model selection criteria. The 
general approach is to fit VAR(p) models with order P = P0, P1,...,Pmax, and choose the value 
of P which minimizes some model selection criteria. The comparison made between the two 
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where tY1 is the All Share Index series and tY2 is the External Reserves Series 

Table 4.4.VAR(3) model Parameter Estimates of All Share Index on External Reserves Series 
Variable Co-efficient Std-error t-ratio (p-value) Remark 
Constant 161.972 109.963 1.4730 (0.1415) Not significant 

11 tY  1.2801 0.0503 25.4302 (0.0000***) Significant 

21 tY  -0.1969 0.0816 -2.4141 (0.0162**) Significant 

31 tY  -0.0928 0.0519 -1.7884 (0.0745*) Significant 

12 tY  -0.0005 0.0310 -0.0164 (0.9869) Not significant 

22 tY  0.0031 0.0302 0.1012 (0.9194) Not significant 

Footnote: ***-sig. at 1%,**-sig. at 5%,*-sig. at 10%, 

Table 4.4 revealed that the value of ASI on ER at any given time using the VAR(3) model is 
determined by the equation below; 

ttttt YYYY 13121111 0928.01969.02801.1                 (4.1) 

(C): Forecasts 

The VAR model identified was used to generate forecasts. Hence, the vector autoregressive 
model is represented as [VAR(3)]; 

ttttt YYYY 13121111 0928.01969.02801.1    

tttttt YYYYY 1113222122 1706.01853.01316.087401.0    

4.3.2 ER against ASI Series Parameters Estimates and VAR Model Identification 

A): VAR Model: Lag Length Selection  

The general approach is to fit VAR(p) models with order P = P0, P1,...,Pmax, and choose the 
value of P which minimizes some model selection criteria. The summary of the lag length 
selection is given in Table 4.5  

Table 4.5.Max Lag Length selection of External Reserves Series onAll Share Index 
Lags loglik p(LR) AIC BIC  HQC 
1 -3707.72  18.36990  18.39962 18.38167 
2 -3707.36 0.39453 18.37306  18.41268  18.38874 
3 -3700.16 0.00015 18.32392 18.39191*  18.36199 
4 -3697.92 0.03443 18.33627*  18.39570 18.35980* 
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The AIC selection criteria suggested VAR(4), while BIC and HQC selection criteria 
suggested VAR(3) and VAR(4) respectively. However, VAR(1) to VAR(4) models were 
fitted. A comparison of the information criteria of the four VAR models fitted shows that the 
VAR(3) model was the best model for ER on ASI series because it has the lowest model 
selection criteria and highest R2 and R2 adjusted (98.21% and 98.18%). Also, three 
parameters of the VAR(3) model were significant at 1% and 5%.  

B): VAR Model Estimation Parameters 

Table 4.6.VAR(3) model Parameter Estimates of External Reserves on ASI 
Variable Co-efficient Std-error t-ratio (p-value) Remark 
Constant 156.757 172.02 0.9113 (0.3627) Not significant 

12 tY  0.8740 0.0494 17.6702 (0.0000***) Significant 

22 tY  -0.1316 0.0648 -1.9980 (0.0464**) Significant 

32 tY  0.1852 0.0482 3.8427 (0.0000***) Significant 

11 tY  0.1706 0.0770 2.2162 (0.0162**) Significant 

21 tY  -0.0893 0.0782 -1.1264 (0.9194) Not significant 

Footnote: ***-sig. at 1%,**-sig. at 5%,*-sig. at 10%, 

Table 4.6 reveals that the value of ER on ASI at any given time using the VAR(3) model is 
determined by the equation below; 

tttttt YYYYY 1113222122 1706.01853.01316.087401.0    (4.2) 

(C): Forecasts 

The VAR model identified was used to generate the forecasts. Hence, the vector 
autoregressive model is represented as [VAR(3)]; 

ttttt YYYY 13121111 0928.01969.02801.1    

tttttt YYYYY 1113222122 1706.01853.01316.087401.0    

4.4 Models Forecasts Comparison (VAR and ARIMA Model Identified Forecasts) 

The estimated errors were used to compare the two models forecasts This is done by 
subtracting the estimated forecast values (Fi) from the original values or [actual values (Ai)] 
to obtain the estimated errors. The VAR and ARIMA model identified forecasts in Table 4.6 
is compared to determine the suitable model between the two models for forecasting Nigeria 
ASI and ER, using forecast accuracy measures. 
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Table 4.7.Forecast Accuracy Measures of ARIMA and VAR model Comparison 
Variable FAM ARIMA model Variable VAR Model 
All Share Index 
(ASI) 
ARIMA(1,1,1) 

MAE 740.18 ASI against 
ER 
VAR(3) 

790.67 
MSE 2054030.40 2045618.36 
MAPE 1.002% 0.214% 

External Reserves 
(ER) 
ARIMA(0,1,0)(0,,0,1)112 

MAE 1340.33 ER against 
ASI 
VAR(3) 

1376.92 
MSE 5606178.81 5298057.42 
MAPE 1.003% 0.261% 

 
From Table 4.7, the bivariate model is better to predict the two series than the univariate 
model, using accuracy measures (i.e. MAPE and MSE). 

5 Conclusion  

The methods used are plots, descriptive statistics, stationarity; ARIMA models identification, 
and the VAR model’s identification. The variables were examined in terms of correlation 
relationships, trend component, and seasonality effect if present in the data. The two series 
plots (ASI and ER) were compared and it was noticed that there is a similar behaviour 
between the two series which shows an upward trend component. The series was difference 
once to obtain a stationary series. A suitable ARIMA model was identified for the two series 
(univariate model). In fitting a multivariate time series model called VAR Model, the two 
series plotted were correlated and their correlation matrix was computed. The ASI and ER 
series are significantly correlated with 0.909 (p-value = 0.000). Thus, the series can be 
considered as a bivariate series, and the bivariate analysis was done using a VAR Model. The 
four VAR models fitted show that the VAR(3) model was the best model for ASI against ER 
and ER against ASI using information criteria. Also, the three parameters of the VAR(3) 
model were significant at 1%, 5%, and 10%.  

The univariate and bivariate model forecasts were compared and the result shows that the 
bivariate model is better to predict the two series than the univariate model from the result of 
forecast accuracy measures (i.e. MAPE and MSE). It seems reasonable to conclude that there 
is a significant relationship between the ASI and ER series.  
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Table 4.1.Identification of ARIMA Model for ASI 
 AR(p) Estimates MA(q) Estimates Modified Box-Pierce 

(Ljung-Box) Chi-Square 
statistic 

RSS 
( 2 ) 

AIC Ran
k 

BIC Ran
k 

Avera
ge 
Rank 

ARIMA 
Models 1  2  3  1  2  3  k=1

2 
k=2
4 

k=3
6 

k=4
8 

ARIMA(1,1,
0) 

0.3135 
(0.000***) 

     15.3 
(11) 

54.4 
(23) 

63.8 
(35) 

85.5 
(47) 

8465361
52 

5936.5
2 

6 5940.5
3 

1 3.5 

ARIMA(2,1,
0) 

0.2867 
(0.000***) 

0.0853 
(0.086
*) 

    13.5 
(10) 

50.2 
(22) 

64.1 
(34) 

81.8 
(46) 

8404010
81 

5935.5
5 

4 5943.5
8 

3 3.5 

ARIMA(3,1,
0) 

0.2820 
(0.000***) 

0.0692 
(0.000
***) 

0.0560 
(0.000**
*) 

   11.3 
(9) 

44.0 
(21) 

57.5 
(33) 

75.4 
(45) 

8377792
74 

5936.2
8 

5 5948.3
1 

8 6.5 

ARIMA(0,1,
1) 

   -0.2665 
(0.000**
*) 

  23.1 
(11) 

66.3 
(23) 

81.3 
(35) 

96.5 
(47) 

8623514
89 

5944.0
7 

9 5948.0
9 

7 8 

ARIMA(0,1,
2) 

   -0.2721 
(0.000**
*) 

-0.1236 
(0.013**
) 

 18.7 
(10) 

60.9 
(22) 

75.8 
(34) 

92.3 
(46) 

8492570
70 

5939.8
3 

8 5947.8
5 

6 7 

ARIMA(0,1,
3) 

  ;/.  -0.2894 
(0.000**
*) 

-0.1534 
(0.003**
*) 

-0.993 
(0.0046**
*) 

12.0 
(9) 

48.7 
(21) 

61.8 
(33) 

80.2 
(45) 

8391732
92 

5936.9
6 

7 5948.9
9 

9 8 

ARIMA(1,1,
1) 

0.6234 
(0.000***) 

  0.3523 
(0.009**
*) 

  12.1 
(10) 

45.4 
(22) 

59.2 
(34) 

77.1 
(46) 

8380451
72 

5934.4
1 

1 5942.4
3 

2 1.5 

ARIMA(2,1,
1) 

0.9148 
(0.001***) 

-
0.1107 
(0.357) 

 0.6363 
(0.022**
) 

 
 

 10.5 
(9) 

42.6 
(21) 

56.8 
(33) 

74.3 
(45) 

8361176
41 

5935.4
7 

2 5947.5
0 

4 3 

ARIMA(1,1,
2) 

0.7615 
(0.000***) 

  0.4831 
(0.001**
*) 

0.0742 
(0.324) 

 10.3 
(9) 

41.9 
(21) 

56.2 
(33) 

73.6 
(46) 

8361635
03 

5935.4
9 

3 5947.5
3 

5 4 

FOOTNOTE: ***-sig. at 1%, **-sig. at 5%,*-sig. at 10% 
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Table 4.2.Identification of ARIMA Model for ER 
 SAR(p) Estimates SMA(q) Estimates Modified Box-Pierce 

(Ljung-Box) Chi-Square 
statistic 

RSS AIC Ran
k 

BIC Ran
k 

SARIMA of Order 
12 

1  2  3
 

1  2  3
 

K=1
2 

K=2
4 

K=3
6 

K=4
8 

ARIMA(0,1,0)(1,
0,0)12 

0.2724 
(0.000***) 

     24.4 
(11) 

38.9 
(23) 

53.1 
(35) 

56.3 
(47) 

22057781
97 

6327.
26 

2 6331.
27 

2 

ARIMA(0,1,0)(2,
0,0)12 

0.2859(0.000
***) 

-
0.0506 
(0.315
0) 

    24.1 
(10) 

39.3 
(22) 

52.0 
(34) 

55.8 
(46) 

22003304
67 

6328.
25 

4 6336.
27 

4 

ARIMA(0,1,0)(0,
0,1)12 

   -0.2701 
(0.000**
*) 

  24.6 
(11) 

40.7 
(23) 

53.0 
(35) 

56.9 
(47) 

22057264
30 

6327.
25 

1 6331.
26 

1 

ARIMA(0,1,0)(0,
0,2)12 

   -0.2866 
(0.000**
*) 

-
0.0522 
(0.301
0) 

 24.0 
(10) 

38.8 
(22) 

52.0 
(34) 

55.6 
(46) 

22002893
24 

6328.
24 

3 6336.
26 

3 

ARIMA(1,1,0)(0,
0,0)12 

-0.0491 
(0.323) 

     66.1 
(11) 

82.8 
(23) 

90.6 
(35) 

93.9 
(47) 

23734548
54 

6357.
15 

5 6361.
16 

5 

FOOTNOTE: ***-sig. at 1%, **-sig. at 5%,*-sig. at 10%, 

 


