

GENERALIZED FUZZY [∗] **-CLOSED SETS IN FUZZY BITOPOLOGICAL SPACES**

M PALANISAMY*

ABSTRACT

In this paper, we introduce and study a new class of fuzzy sets in a fuzzy bitopological space (X, τ_1, τ_2) , namely, ij-fuzzy ψ^* -closed sets, which settled properly in between the class of ji -fuzzy α -closed sets and the class of ij -fuzzy $g\alpha$ -closed sets. We also introduce and study new classes of spaces, namely, ij - $FT_{1/5}$ spaces, ij - FT_e spaces, ij - $F\alpha T_e$ spaces, ij - FT_l spaces and ij - $F\alpha T_l$ spaces. As applications of ij-fuzzy ψ^* -closed sets, we introduce and study four new classes of spaces, namely, ij - $FT^{\psi^*}_{1/5}$ spaces, ij - ψ^* $_{FT_{1/5}}$ spaces (both classes contain the class of ij - $FT_{1/5}$ spaces), ij - $F\alpha T_k$ spaces and ij - FT_k spaces. The class of ij - FT_{k} spaces is properly placed in between the class of ij- FT_e spaces and the class of ij- FT_l spaces. It is shown that dual of the class of ij - $FT_{1/5}^{\psi^*}$ spaces to the class of ij - $F\alpha T_e$ spaces is the class of ij - $F\alpha T_k$ spaces and the dual of the class of ij- ψ^* $_{FT_{1/5}}$ spaces to the class of ij- $FT_{1/5}$ spaces is the class of ij - $FT^{\psi^*}_{1/5}$ spaces and also that the dual of the class ij - FT_l spaces to the class of ij- FT_k spaces is the class of ij- $F\alpha T_k$ spaces. Further we introduce and study ij-fuzzy ψ^* continuous functions and ij-fuzzy ψ^* irresolute functions.

KEYWORDS: ij-fuzzy ψ^* -closed sets, ij-fuzzy ψ^* -continuous functions, ij- $FT_{1/5}$ spaces, ij - $FT_{1/5}^{\psi^*}$ spaces, ij - ψ^* $_{FT_{1/5}}$ spaces.

INTRODUCTION

Recently the fuzzy topological structure τ on a set X has a lot of applications in many real life applications. The abstractness of a set X enlarges the range of its applications. For example, a special type of this fuzzy topological structure is the basic topological structure for fuzzy rough set theory and moreover, τ and its generalizations are applied in biochemical studies [1-3].

The work presented in this paper will open the way for using two viewpoints in these applications. That is, to apply two topologies at the same time. The concepts of fg -closed sets, fgs -closed sets, fsg -closed sets, fga -closed sets, $f \alpha g$ -closed sets, $f gp$ -closed sets, $f gsp$ closed sets and $fspg$ - closed sets have been introduced in fuzzy topological spaces ([4-10]).

^{*} Assistant Professor of Mathematics, Vivekanandha College of Arts And Sciences for Women (Autonomous), Elayampalayam, Tiruchengode. *Correspondence E-mail Id:* editor@eurekajournals.com

Ismail Ibedou [11] introduced the concepts of ij - $FGC(X)$, ij - $FGSC(X)$, ij - $FGGC(X)$, ij - $FG\alpha C(X)$, ij- $F\alpha GC(X)$, ij- $FGPC(X)$, ij- $FGSPC(X)$ and $ij-FSPGC(X)$ subset of (X, τ_1, τ_2) . Abd Allah and Nawar [12] introduced the concept of fuzzy ψ^* -open sets and studied the properties of $FT_{1/5}$, FT_e , $F\alpha T_e$, FT_l , $F\alpha T_l$. In this paper, we introduce a new class of fuzzy sets in a fuzzy bitopological space (X, τ_1, τ_2) , namely, ij-fuzzy ψ^* closed sets, which settled properly in between the class of ii -fuzzy α -closed sets and the class of ij -fuzzy $g\alpha$ -closed sets. And we extend the properties to a fuzzy bitopological space (X, τ_1, τ_2) .

Also we use the family of ij-fuzzy ψ^* -closed sets to introduce some types of properties in (X, τ_1, τ_2) , and we study the relation between these properties. The concepts of fuzzy precontinuous, fuzzy semi-continuous, fuzzy α continuous, fuzzy sp -continuous, fuzzy g continuous, fuzzy αg -continuous, fuzzy $g\alpha$ continuous, fuzzy qs -continuous, fuzzy sq continuous, fuzzy qsp -continuous, fuzzy spg continuous, fuzzy gp -continous, fuzzy gc irresolute, fuzzy qs -irresolute, fuzzy αg irresolute and fuzzy $g\alpha$ -irresolute functions have been introduced in fuzzy topological spaces ([7,10, 13-28]). Ismail Ibedou [11] introduced the concepts of $(ij$ -fuzzy precontinuous, i j-fuzzy semi-continuous, i j-fuzzy α -continuous, ij-fuzzy sp-continuous, ij-fuzzy g -continuous, ij- fuzzy αg -continuous, ij-fuzzy $g\alpha$ -continuous, ij-fuzzy $g\beta$ -continuous, ij-fuzzy sg -continuous, ij -fuzzy qsp -continuous, ij fuzzy spg -continuous, ij -fuzzy gp -continuous, ij -fuzzy gc -irresolute, ij -fuzzy gs -irresolute, ij fuzzy αg -irresolute, ij-fuzzy $g\alpha$ -irresolute) functions in fuzzy bitopological spaces. In this paper, we introduce a new functions in a fuzzy bitopological space (X, τ_1, τ_2) , namely, ij-fuzzy ψ^* -continuous functions and *ij*-fuzzy ψ^* irresolute functions.

PRELIMINARIES

DEFINITION 2.1 [23]

A fuzzy subset A of a fuzzy bitopological space (X, τ_1, τ_2) is called:

- (1) *ij*-fuzzy preopen if $A \leq \tau_i$ *int* $(\tau_j cl(A))$ and ij-fuzzy preclosed if τ_i -cl $(\tau_j$ $int(A)) \leq A$.
- (2) *ij*-fuzzy semi-open if $A \leq \tau_j$ $cl(\tau_i$ $int(A)$) and ij-fuzzy semi-closed if τ_j $int(\tau_i - cl(A)) \leq A$.
- (3) *ij*-fuzzy α -open if $A \leq \tau_i$ -*int* $(\tau_j \mathit{cl}(\tau_i - \mathit{int}(A))$ and ij-fuzzy α -closed if τ_i $cl(\tau_i - int(\tau_i - cl(A))) \leq A.$
- (4) *ij*-fuzzy semi-preopen if $A \leq \tau_j$ -cl τ_i $int\left(\tau_j-cl(A)\right)$ and ij-fuzzy semi preclosed if τ_j - $int\left(\tau_i - cl\left(\tau_j - \tau_j\right)\right)$ $int(A)\big)\bigg)\leq A.$

The class of all ij -fuzzy preopen (resp. ij -fuzzy semi-open, ij -fuzzy α -open and ij - fuzzy semipreopen) sets in a fuzzy bitopological space (X, τ_1, τ_2) is denoted by ij- $FPO(X)$ (resp. ij- $FSO(X)$, $ij-F\alpha O(X)$ and $ij-FSPO(X)$). The class of all ij -fuzzy preclosed (resp. ij - fuzzy semi-closed, ij -fuzzy α -closed and ij -fuzzy semi-preclosed) sets in a fuzzy bitopological space (X, τ_1, τ_2) is denoted by ij- $FPC(X)$ (resp. ij - $FSC(X)$, ij - $F\alpha C(X)$ and ij - $FSPC(X)$).

DEFINITION 2.2 [23]

For a fuzzy subset A of a fuzzy bitopological space (X, τ_1, τ_2) , the *ij*-fuzzy pre-closure (resp. ij -fuzzy semi-closure, ij -fuzzy α -closure and ij fuzzy semi-pre-closure) of A are denoted and defined as follow:

(1) $ij - fpcl(A) = \Lambda \{F < X : F \in ij FPC(X), F \geq A$.

- (2) $ij f \text{ } scl(A) = \wedge \{F < X : F \in \mathcal{U} \}$ $FSC(X), F \geq A$.
- (3) $ij \frac{f}{acl(A)} = \Lambda \{F < X : F \in ij F\alpha C(X), F \geq A$.
- (4) $ij fspcl(A) = \wedge \{F < X : F \in ij FSPC(X), F \geq A$.

Dually, the ij -fuzzy preinterior (resp. ij -fuzzy semi-interior, ij -fuzzy α -interior and ij - fuzzy semi-preinterior) of A, denoted by ij - f $pint(A)$ (resp. ij - $fsint(A)$, ij - $faint(A)$ and ij f spint (A)) is the union of all ij-fuzzy preopen (resp. ij -fuzzy semi-open, ij -fuzzy α -open and ij -fuzzy semi-preopen) fuzzy subsets of X contained in A.

DEFINITION 2.3 [11]

A fuzzy subset A of a fuzzy bitopological space (X, τ_1, τ_2) is called:

- (1) ij fuzzy g-closed (denoted by ij $FGC(X)$) if, $A \leq U, U \in \tau_i \Rightarrow j \text{-} fcl(A) \leq U$.
- (2) ij -fuzzy qs -closed (denoted by ij - $FGSC(X)$ if, $A \leq U$, $U \in \tau_i \Rightarrow ii$ $fscl(A) \leq U$.
- (3) ij -fuzzy sg -closed (denoted by ij - $FSGC(X)$) if, $A \leq U$, $U \in i j$ - $FSO(X) \Rightarrow ii$ $fscl(A) \leq U$.
- (4) ij -fuzzy $g\alpha$ -closed (denoted by ij - $FG\alpha C(X)$) if, $A \leq U$, $U \in i j$ - $F\alpha O(X) \Rightarrow ii$ $f \alpha c l(A) \leq U$.
- (5) ij -fuzzy αg -closed (denoted by ij - $F\alpha G C(X)$ if, $A \leq U$, $U \in \tau_i \Rightarrow ii$ - $Facl(A) \leq U$.
- (6) ij -fuzzy gp -closed (denoted by ij - $FGPC(X)$ if, $A \leq U$, $U \in \tau_i \Rightarrow ii$ $fpcl(A) \leq U$.
- (7) i *i*-fuzzy qsp -closed (denoted by i *j*- $FGSPC(X)$ if, $A \le U, U \in \tau_i \Rightarrow ii$ $fspcl(A) \leq U$.
- (8) ij -fuzzy spg -closed (denoted by ij - $FSPGC(X))$) if, $A \leq U, U \in ii-FSPO(X) \Rightarrow$ $ji\text{-} fspcl(A) \leq U.$

The fuzzy complement of an ij - $FGC(X)$ (resp. $i i$ -FGSC(X), $i j$ -FSGC(X), $i j$ -FG α C, $i j$ - $F\alpha GC(X)$, ij -FGPC(X), ij -FGSPC(X) and ij - $FSPGC(X)$) fuzzy subset of (X, τ_1, τ_2) is called an ij - $FGO(X)$ (resp. ij - $FGSO(X)$, ij - $FSGO(X)$, $ij-FG\alpha O(X)$, $ij-F\alpha GO(X)$, ij - $FGPO(X)$, $ij-FGSPO(X)$ and $ij-FSPGO(X)$ fuzzy subset of (X, τ_1, τ_2) .

DEFINITION 2.4[11]

A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called:

- (1) $i\overline{i}$ -fuzzy pre-continuous if $\forall V \in i$ - $FC(Y), f^{-1}(V) \in ij$ -FPC(X).
- (2) ij -fuzzy semi-continuous if $\forall V \in i$ - $FC(Y), f^{-1}(V) \in ij$ -FSC(X).
- (3) ij-fuzzy α -continuous if $\forall V \in i$ - $FC(Y), f^{-1}(V) \in ij$ - $FacC(X)$.
- (4) ij fuzzy sp-continuous if $\forall V \in i$ - $FC(Y), f^{-1}(V) \in ij$ -FSPC(X).
- (5) ij-fuzzy g -continuous if $\forall V \in j$ - $FC(Y), f^{-1}(V) \in ij-FGC(X).$
- (6) ij -fuzzy αg -continuous if $\forall V \in j$ - $FC(Y), f^{-1}(V) \in ij$ -FaGC(X).
- (7) ij-fuzzy $g\alpha$ -continuou if $\forall V \in j$ - $FC(Y), f^{-1}(V) \in ij$ - $FG\alpha C(X)$.
- (8) ij -fuzzy *gs*-continuous if $\forall V \in j$ - $FC(Y), f^{-1}(V) \in ij$ -FGSC(X).
- (9) ij -fuzzy sg -continuous if $\forall V \in j$ - $FC(Y), f^{-1}(V) \in ij$ -FSGC(X).
- (10) ij -fuzzy gsp-continuous if $\forall V \in j$ - $FC(Y), f^{-1}(V) \in ij-FGSPC(X).$
- (11) ij -fuzzy spg-continuous if $\forall V \in j$ - $FC(Y), f^{-1}(V) \in ij$ -FSPGC(X).
- (12) ij-fuzzy gp -continuous if $\forall V \in j$ - $FC(Y), f^{-1}(V) \in ij-FGPC(X).$
- (13) *i*-continuous if $\forall V \in i\text{-}FC(Y), f^{-1}(V) \in i\text{-}$ $FC(X)$.
- (14) ij -fuzzy gc -irresolute if $\forall V \in ii$ - $FGC(Y), f^{-1}(V) \in ij$ -FGC(X).
- (15) ij-fuzzy gs -irresolute if $\forall V \in ij$ - $FGSC(Y), f^{-1}(V) \in ij-FGSC(X).$
- (16) ij-fuzzy αg -irresolute if $\forall V \in i$ j- $F\alpha GC(Y), f^{-1}(V) \in ij$ - $F\alpha GC(X)$.

Generalized fuzzy Ψ^-closed Sets in Fuzzy Bitopological Spaces M Palanisamy* **4**

(17) ij-fuzzy $g\alpha$ -irresolute if $\forall V \in i$ j- $FG\alpha C(Y), f^{-1}(V) \in ij$ - $FG\alpha C(X)$.

DEFINITION 2.5 [12]

A fuzzy subset A of (X, τ) is called fuzzy ψ^* closed if $A \leq U, U \in FG \alpha O(X) \Rightarrow \{ \alpha cl(A) \leq$ U. The fuzzy complement of fuzzy ψ^* -closed set is said to be fuzzy ψ^* -open.

DEFINITION 2.6 [12]

A fuzzy topological space (X, τ) is called:

- (1) $FT_{1/5}$ space if $FG\alpha C(X) = F\alpha C(X)$.
- (2) $FT_{1/5}^{\psi^*}$ space if $F\psi^* C(X) = F\alpha C(X)$.
- (3) ψ^* $_{FT_{1/5}}$ space if $FG\alpha C(X) = F\psi^* C(X)$.
- (4) FT_e space if $FGSC(X) = Fac(X)$.
- (5) $F \alpha T_e$ space if $F \alpha G C(X) = F \alpha C(X)$.
- (6) FT_k space if $FGSC(X) = F\psi^*C(X)$.
- (7) $F \alpha T_k$ space if $F \alpha G C(X) = F \psi^* C(X)$.
- (8) FT_l space if $FGSC(X) = FG\alpha C(X)$.
- (9) $F\alpha T_l$ space if $F\alpha GC(X) = FG\alpha C(X)$.

DEFINITION 2.7 [12]

A function $f : (X, \tau) \to (Y, \sigma)$ is called:

- (1) Fuzzy ∗ -continuous if $\forall V \in FC(Y), f^{-1}(V) \in F\psi^*C(X).$
- (2) Fuzzy ∗ -irresolute if $\forall V \in F \psi^* C(Y), f^{-1}(V) \in F \psi^* C(X).$
- (3) Fuzzy ∗ -closed if $A \in F\psi^*C(X), f(A) \in F\psi^*C(Y).$

3. BASIC PROPERTIES IF ij **-FUZZY** ψ^* **-CLOSED SETS**

We introduce the following definition.

DEFINITION 3.1

A fuzzy subset A of a fuzzy bitopological space (X, τ_1, τ_2) is called ij-fuzzy ψ^* -closed set if, $A \leq U, U \in i \in F \mathcal{G} \alpha O(X) \Rightarrow i \in \mathcal{G} \alpha O(A) \leq U.$

The class of ij-fuzzy ψ^* -closed subsets of (X, τ_1, τ_2) is denoted by ij - $F\psi^* C(X)$.

The following diagram shows the relationships of ij-fuzzy ψ^* -closed sets with some other fuzzy sets discussed in this section (Diagram 1).

EXAMPLE 3.1

Let $X = \{a, b, c\}$ $Y = \{p, q\}$ $\tau_1 = \{0, 1, \alpha_1, \alpha_2, \alpha_3\}$ $\tau_2 = \{0, 1, \beta\}$ $\alpha_1 = \frac{0.6}{a}$ $\frac{0.6}{a} + \frac{0}{b}$ $\frac{0}{b} + \frac{0}{c}$ $\mathcal{C}_{0}^{(n)}$ $\alpha_2 =$ *0* $\frac{1}{a}$ + *0*.*6* $\frac{1}{b}$ + + *0* C $a_3 = \frac{0.6}{a}$ $\frac{0.6}{a} + \frac{0.6}{b}$ $\frac{0.6}{b} + \frac{0}{c}$ C And $\beta = \frac{0.6}{n}$ $\frac{0.6}{p} + \frac{0}{q}$ q β [:] $(X, \tau_1) \rightarrow (Y, \tau_2)$ As follows: $f(a) = p$, $f(b) = f(c) = a$.

Then $\beta \in 12$ - *Fgsp*-closed but $\alpha_1 \wedge \alpha_3 = \alpha_3 \notin \mathbb{Z}$ 12-*Fgsp*-closed.

Where none of these implications is reversible as shown by the following example.

EXAMPLE 3.1.1

Let $I = [0,1]$ and σ_1 , σ_2 , σ_3 be fuzzy sets of I defined as

$$
\sigma_1(x) = \begin{cases}\n0 \text{ if } 0 \le x \le \frac{1}{2} \\
x - 2 \text{ if } \frac{1}{2} \le x \le 1\n\end{cases}
$$
\n
$$
\sigma_2(x) = \sigma_3(x) = \begin{cases}\n1 \text{ if } 0 \le x \le \frac{1}{4} \\
4x \text{ if } \frac{1}{4} \le x \le \frac{1}{2} \\
0 \text{ if } \frac{1}{2} \le x \le 1\n\end{cases}
$$

Clearly $\tau_1 = \{0, 1, \sigma_1, \sigma_2, \sigma_1 \lor \sigma_2\}$ and $\tau_2 = \{0, 1, \sigma_3\}$ are fuzzy topologies on *I*.

Let $f: (I, \tau_1) \to (I, \tau_2)$ be defined by $f(x) = x$ for $x \in \mathcal{Y}$

(arrows 1,5) $\sigma_3 \in 12$ - Fg -closed \wedge 12- $Fg\alpha$ -closed but $\sigma_3 \notin 2$ -Fuzzy closed.

(arrows 2.6) $\sigma_3 \in 12$ -*Fag*-closed Λ 12-*Fsg*closed but $\sigma_3 \notin 21$ - Fa -closed, since there exist σ_1 ∨ σ_2 ∈ τ_1 containing σ_1 such that 2 $d'(\sigma_1) = \sigma_3 \notin \tau_1$.

(arrows 3,7) $\sigma_3 \in 12$ -*Fgp*-closed \land 12-*Fspg*closed but $\sigma_3 \notin 21$ -Fuzzy semi closed, since there exist $\sigma_3 \in \tau_2$ containing σ_3 such that 21- $F\alpha$ -closed $\sigma_3 = X \leq \sigma_3$.

(arrow 4) $\sigma_3 \in 12$ - $F\psi$ ²-closed but $\sigma_3 \notin 21$ -Fuzzy closed.

(arrow 8) $\sigma_3 \in 12$ -*Fgsp*-closed but $\sigma_3 \notin 21$ -Fuzzy semi closed, since there exist $\sigma_1 \vee \sigma_2 \in$ 21-Fuzzy semi generalized closed containing σ_1 such that $1-d \{ \sigma_1 \vee \sigma_2 \} = (\sigma_1 \vee \sigma_2)^c \nleq \sigma_1$.

(arrow 9) $\sigma_3 \in 21$ -Fuzzy α -closed but $\sigma_3 \notin 2$ -Fuzzy closed.

(arrow 10) $\sigma_3 \in 12$ -*Fag*-closed but $\sigma_3 \notin 2$ -Fuzzy closed, since there exist $\sigma_3 \in \tau_2$ containing σ_3 such that 2-Fuzzy closed, $\sigma_3 = X \nleq \sigma_3$.

(arrow 11) $\sigma_3 \in 12$ -*Fgs*-closed but $\sigma_3 \notin 21$ -Fuzzy closed, since there exist $\sigma_3 \in \tau_2$ containing σ_3 such that 12-Fuzzy $\vec{\psi}$ -closed, $\sigma_3 = X \not\leq \sigma_3$.

(arrow 12) $\sigma_3 \in 21$ -Fuzzy semi closed but $\sigma_3 \notin 21$ -Fuzzy α -closed.

(arrow 13) $\sigma_3 \in 12$ -*Fgsp*-closed but $\sigma_3 \notin 21$ -Fuzzy semi closed, since there exist $\sigma_1 \vee \sigma_2 \in \tau_1$ containing σ_1 such that 2- d { σ_1 } = $\sigma_3 \notin \tau_1$.

(arrow 14) $\sigma_3 \in 21$ -Fuzzy semi-pre-closed but *21*-Fuzzy semi closed.

(arrow 15) $\sigma_3 \in 12$ -Fuzzy β sp-closed but 21-Fuzzy semi closed.

(arrow 16) $\sigma_3 \in 21$ -Fuzzy pre-closed but $\sigma_3 \notin$ 12-Fuzzy qp -closed.

(arrow 17) $\sigma_3 \in 12$ -*Fgsp*-closed but $\sigma_3 \notin 12$ -Fuzzy closed, since there exist $\sigma_1 \vee \sigma_2 \in 21$ - Fa open containing σ_1 such that 1- d { $\sigma_1 \vee \sigma_2$ } = $(\sigma_1 \vee \sigma_2)^c \n\leq \sigma_1.$

 (arrow 18) $\sigma_3 \in 12$ -*Fgs*-closed but $\sigma_3 \notin 21$ -Fuzzy α -closed.

THEOREM 3.1

Every \dot{y} -fuzzy α -closed set is an \dot{y} -fuzzy $\dot{\psi}$ closed set.

The following example supports that an $\ddot{\mathcal{U}}$ fuzzy $\vec{\psi}$ -closed set need not be a \vec{y} -fuzzy α closed set in general.

EXAMPLE 3.1.2

Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi\{a\}, \{a, d\}\}\$ and $\tau_2 = \{X, \phi\{a, b\}, \{c, d\}\}.$ Then we have $A = \{b, c\} \in \ddot{y}$ - $F\psi$ \mathcal{A} \mathcal{A} but $A \notin \ddot{A}$ - $F\alpha\mathcal{A}$ \mathcal{A} .

Therefore the class of \ddot{y} -fuzzy $\rlap{\hspace{0.02cm}/}v$ -closed sets is properly contains the class of $\ddot{\mu}$ -fuzzy α -closed sets. Next we show that the class of $\ddot{\mathcal{U}}$ -fuzzy $\not\!\!\!/\!\!\!/\,$ -closed sets is properly contained in the class of ii -fuzzy a^2 -closed set.

THEOREM 3.2

Every \ddot{y} -fuzzy $\dot{\psi}$ -closed set is an \ddot{y} -fuzzy ga closed set.

The following example supports that the converse of the above theorem is not true in general.

EXAMPLE 3.2

Let χ , τ_1 and τ_2 are as in Example 3.1. Then the fuzzy subset $B = \{b\} \in i\bar{j}$ - FGaC(\bar{A}) but $B \notin i\bar{j}$ - $F\psi$ α *.8*).

REMARK 3.1

The fuzzy intersection of two sets in \ddot{y} -fuzzy $\not\!\psi$ -closed set is not in general a set in $\not\!$ - fuzzy ∗ -closed set, as shown by the following example.

EXAMPLE 3.3

Let $\chi \tau_1$ and τ_2 be as in the Example 3.1. Then we have $\{a, b\}$ and $\{b, c\} \in \mathcal{Y} \cdot F \mathcal{Y} \cap \mathcal{A}$ but $\{a, b\} \wedge \{b, c\} = \{b\} \notin \mathcal{Y} \cdot F\psi \mathcal{A}.$

THEOREM 3.3

For any fuzzy bitopological space (X, τ_1, τ_2) .

- (1) ij -Fif $C(X) \wedge ji$ -FGaO(X) $\leq ji$ -FaC(X).
- (2) If $A \in \mathcal{Y}$ $F \mathcal{Y} (A)$ and $A \leq B \leq \mathcal{Y}$ facl (A) , then $B \in i \in I$ - $F \psi \mathcal{A}(\mathbf{A})$.

PROOF.

- (1) Let $A \in \mathit{ij}$ $F \mathit{N} \mathit{k}$ ($A \mathit{N}$ $A \mathit{j}$ $F \mathit{GaO}(A)$. Then we have ji - fac $(A) \leq A$ Consequently, $A \in$ ii - $Fac(X)$.
- (2) Let $U \in H$ FGaO(Λ) such that $B \leq U$. Since $A \leq B$ and $A \in i \in I \Rightarrow K \& C \& A$, then ji *facl* $(A) \leq U$ Since $B \leq \tilde{\mu}$ - *facl* (A) , then we have ji - ford $(B) \leq ji$ - ford $(A) \leq U$. Therefore, $B \in i \in I$ - $F \psi$ (A) .

THEOREM 3.4

Let (X, τ_1, τ_2) be a fuzzy bitopological space, $A \in i j$ - FGaC(X). Then $A \in i j$ - F ψ C(X) if $i j$ - $F \alpha \mathcal{O}(\mathcal{X}) = \ddot{\mathcal{X}} - F G \alpha O(\mathcal{X}).$

PROOF.

Let $A \in i \in F \mathcal{G} \alpha C(X)$ i.e. $A \leq U$ and $U \in i \in I$ $F\alpha O(X)$, then ji - $f\alpha cl(A) \leq U$. Since ij - $F\alpha O(X) = ji$ - $F G\alpha O(X)$. Consequently, $A \leq U$ and $U \in ji$ - $FG\alpha O(X)$, then ji - $facl(A) \leq U$ i.e. $A \in i j$ - $F \psi^* C(X)$.

THEOREM 3.5

Let (X_1, τ_1, τ_2) and $(X_1, \tau_1^*, \tau_2^*)$ be two fuzzy bitopological spaces. Then the following statement is true. If $A \in i j$ - $F \psi^* O(X_1)$ and $B \in i j$ - $F \psi^* O(X_2)$, then $A \times B \in i j$ - $F \psi^* O(X_1 \times$ X_2).

PROOF.

Let $A \in i j$ - $F \psi^* O(X_1)$ and $B \in i j$ - $F \psi^* O(X_2)$ and $W = A \times B \le X_1 \times X_2$. Let $F = F_1 \times F_2 \le$ $W, F \in ji$ - $FG\alpha C(X_1 \times X_2)$. Then there are $F_1 \in ji\text{-}FG\alpha C(X_1), F_2 \in ji\text{-}FG\alpha C(X_2), F_1 \leq$ A, $F_2 \leq B$ and so, $F_1 \leq \tau_{ji}$ - $faint(A)$ and $F_2 \leq \tau_{ji}^*$ - $faint(B)$. Hence $F_1 \times F_2 \leq A \times B$ and $F_1 \times F_2 \leq \tau_{ji}$ -faint $(A) \times \tau_{ji}^*$ -faint $(B) = \tau_{ji} \times$ τ_{ji}^* - $faint(A \times B)$.

Therefore $A \times B \in ij$ - $F\psi^* O(X_1 \times X_2)$.

THEOREM 3.6

A fuzzy subset A of X is ij - $F\psi^*O(X)$ if and only if F is a fuzzy subset of ij - $faint(A)$ whenever $F \leq A$ and $F \in ji$ - $FG\alpha C(X)$.

THEOREM 3.7

For each $x \in X$, either $\{x\}$ is ji - $FG\alpha C(X)$ or $\{x\}$ is ij - $F\psi^*O(X)$.

THEOREM 3.8

A fuzzy subset A of X is ij - $F\psi^* C(X)$ if and only if $i i$ - $F \alpha C(A) \wedge F = \emptyset$, whenever $A \wedge F = \emptyset$, where F is $ji-FG\alpha C(X)$.

$APPLICATIONS OF *ij* - FUZZY ψ^* -CLOSED$ **SETS**

As applications of ij-fuzzy ψ^* -closed sets, four new classes of spaces, namely, ij - $FT_{1/5}^{\psi^*}$ spaces, $i j$ - ψ^* $_{FT_{1/5}}$ spaces, $\it ij$ - FT_{k} spaces, and $\it ij$ - $F\alpha T_{k}$ spaces are introduced.

We introduce the following definitions.

DEFINITION 4.1

A fuzzy bitopological space (X, τ_1, τ_2) is called an ij- $FT_{1/5}$ space if ij- $FG\alpha C(X) = ji$ - $F\alpha C(X)$.

EXAMPLE 4.1

Let $X = \{a, b, c, d\}$ $\tau_1 = \{X, \phi, \{a, b\}\}\$

$$
\tau_2 = \{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}\
$$

Then the sets in $\{X, \phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\$ are called ij- $FT_{1/5}$ open and the sets in $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}\$ are called ij- $FT_{1/5}$ closed.

Then (1, 5)-
$$
ij
$$
-
 $F\psi^* C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}.$

Clearly the sets $\{b\}$ and $\{c\}$ are $(1, 5)$ -Fuzzy ψ^* closed but their union $\{b, c\}$ is not $(1, 5)$ -Fuzzy ψ^* -closed set in X.

DEFINITION 4.2

A fuzzy bitopological space (X, τ_1, τ_2) is called an ij - $FT^{\psi^*}_{1/5}$ space if ij - $F\psi^*C(X) = ji$ - $F\alpha C(X)$.

We prove that the class of ij - $FT^{\psi^*}_{1/5}$ spaces properly contains the class of ij - $FT_{1/5}$ spaces.

THEOREM 4.1

Every ij - $FT_{1/5}$ space is an ij - $FT_{1/5}^{\psi^*}$ space.

PROOF.

Follows from the fact that every *ij*-fuzzy ψ^* closed set is an ij -fuzzy $g\alpha$ -closed set.

The converse of the above theorem is not true as it can be seen from the following example.

EXAMPLE 4.2

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{b\}\}\.$ Then (X, τ_1, τ_2) is an *ij*-

 $FT_{1/5}^{\psi^*}$ space but not an ij - $FT_{1/5}$ space since ${b, c} \in i \in F \mathcal{G} \alpha C(X)$ but ${b, c} \notin i \in F \alpha C(X)$.

DEFINITION 4.3

A fuzzy bitopological space (X, τ_1, τ_2) is called an *ij-* ψ^* $_{FT_{1/5}}$ space if ij - $FG\alpha C(X) = ij$ - $F\psi^* C(X)$.

THEOREM 4.2

Every ij- $FT_{1/5}$ space is an ij- ψ^* $_{FT_{1/5}}$ space.

PROOF.

Let (X, τ_1, τ_2) be an ij- $FT_{1/5}$ space. Let $A \in ij$ - $FG\alpha C(X)$. Since (X, τ_1, τ_2) is an ij - $FT_{1/5}$ space, then $A \in ji\text{-}F\alpha C(X)$. Hence, by using Theorem 3.1, we have $A \in i j$ - $F \psi^* C(X)$. Therefore (X, τ_1, τ_2) is an ij- ψ^* $_{FT_{1/5}}$ space.

The converse of the above theorem is not true as we see in the following example.

EXAMPLE 4.3

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}\.$ Then (X, τ_1, τ_2) is an ij- ψ^* $_{FT_{1/5}}$ space but not an ij - $FT_{1/5}$ space since ${a, b} \in i j$ - $FG\alpha C(X)$ but ${a, b} \notin j i$ - $F\alpha C(X)$.

We show that ij - $FT^{\psi^*}_{1/5}$ ness is independent from ij - ψ^* $FT_{1/5}$ ness.

REMARK 4.1

 ij - $FT^{\psi^*}_{1/5}$ ness and ij - ψ^* $FT_{1/5}$ ness are independent as it can be seen from the next two examples.

EXAMPLE 4.4

Let X, τ_1 and τ_2 be as in the Example 4.1. Then (X, τ_1, τ_2) is an ij - $FT_{1/5}^{\psi^*}$ space but not an ij - ψ^* $_{FT_{1/5}}$ space since $\{b,c\} \in ij$ - $FG\alpha C(X)$ but ${b, c} \notin ij-F\psi^*C(X).$

EXAMPLE 4.5

Let X , τ_1 and τ_2 be as in the Example 4.2. Then (X, τ_1, τ_2) is an ij- ψ^* $_{FT_{1/5}}$ space but not an ij- $FT_{1/5}^{\psi^*}$ space since $\{a,c\} \in ij$ - $F\psi^*C(X)$ but ${a, c} \notin ji\text{-}Fac(X).$

THEOREM 4.3

If (X, τ_1, τ_2) is an $ij \cdot \psi^*$ $_{FT_{1/5}}$ space, then for each $x \in X$, $\{x\}$ is either ij-fuzzy α -closed or ijfuzzy ψ^* -open.

PROOF.

Suppose that (X, τ_1, τ_2) is an ij- ψ^* $_{FT_{1/5}}$ space. Let $x \in X$ and assume that $\{x\} \notin i \in F \alpha C(X)$. Then $\{x\} \notin i \in F \text{G} \alpha C(X)$ since every $i \in I$ -fuzzy α closed set is an ij -fuzzy $g\alpha$ -closed set. So X- ${x} \notin ji\text{-}F\alpha O(X)$. Therefore $X\text{-}\{x\} \in ij\text{-}$ $FG\alpha C(X)$ since X is the only ji-fuzzy α -open set which contains $X - \{x\}$. Since (X, τ_1, τ_2) is an *ij*- ψ^* $_{FT_{1/5}}$ space, then $X-\{x\} \in ij-F\psi^*C(X)$ or equivalently $\{x\} \notin ij$ - $F\psi^*O(X)$.

THEOREM 4.4

A fuzzy bitopological space (X, τ_1, τ_2) is an ij- $FT_{1/5}$ space if and only if it is ij - ψ^* $_{FT_{1/5}}$ and ij - ${FT_{1/5}^\psi}^*$ space.

PROOF.

The necessity follows from the Theorems 4.1 and 4.2. For the sufficiency, suppose that (X, τ_1, τ_2) is both $ij \cdot \psi^*$ $_{FT_{1/5}}$ and ij - $FT_{1/5}^{\psi^*}$ space. Let $A \in ij$ - $FG\alpha C(X)$. Since (X, τ_1, τ_2) is an ij- ψ^* $_{FT_{1/5}}$ space, then $A \in i j$ - $F \psi^* C(X)$. Since (X, τ_1, τ_2) is an ij - $FT_{1/5}^{\psi^*}$ space, then $A \in ji$ - $F\alpha C(X)$. Thus (X, τ_1, τ_2) is an ij - $FT_{1/5}$ space.

We introduce the following definitions ij - FT_e spaces and ij - $F\alpha T_e$ spaces respectively and show that every ij - FT_e ($ij - F\alpha T_e$) space is an ij - $FT_{1/5}$ space.

DEFINITION 4.4

A fuzzy bitopological space (X, τ_1, τ_2) is called an *ij-FT_e* space if *ij-FGSC*(*X*) = *ji-FαC*(*X*).

DEFINITION 4.5

A fuzzy bitopological space (X, τ_1, τ_2) is called an *ij-F* αT_e space if *ij-F* $\alpha GC(X) = ji$ *-F* $\alpha C(X)$ *.*

THEOREM 4.5

Every ij- FT_e space is an ij- $FT_{1/5}$ space.

PROOF.

Follows from the fact that every i *j*-fuzzy $g\alpha$ closed set is an ij -fuzzy gs -closed set.

An ij - $FT_{1/5}$ space need not be an ij - FT_e space as we see the next example.

EXAMPLE 4.6

Let

 $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\$ and $\tau_2 = \{X, \phi, \{a\}, \{a, b\}\}\$. Then (X, τ_1, τ_2) is an ij- $FT_{1/5}$ space but not an ij- FT_e space since ${b} \in ij-FGSC(X)$ but ${b} \notin ji-F\alpha C(X)$.

THEOREM 4.6

Every ij- $F\alpha T_e$ space is an ij- $FT_{1/5}$ space.

PROOF.

Follows from the fact that every $i\hat{i}$ -fuzzy $a\alpha$ closed set is an ij -fuzzy αg -closed set.

An ij - $FT_{1/5}$ space need not be an ij - $F\alpha T_e$ space as we see the next example.

EXAMPLE 4.7

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\$ and $\tau_2 = \{X, \phi, \{a\}, \{a, c\}\}\$. Then (X, τ_1, τ_2) is an ij- $FT_{1/5}$ space but not an ij- $F\alpha T_e$ space since $\{a, c\} \in i\mathfrak{j}$ - $F\alpha G C(X)$ but $\{a, c\} \notin i\mathfrak{i}$ - $Fac(X).$

THEOREM 4.7

Every ij - FT_e space is an ij - $F\alpha T_e$ space.

PROOF.

Follows from the fact that every ij-fuzzy αg closed set is an i *j*-fuzzy qs -closed set.

The converse of the above theorem is not true in general as the following example supports.

EXAMPLE 4.8

Let X, τ_1 and τ_2 be as in the Example 4.5. Then (X, τ_1, τ_2) is an ij - $F\alpha T_e$ space but not an ij - FT_e space since ${b} \in i \in FGSC(X)$ but ${b} \notin ii$ - $F\alpha C(X)$.

THEOREM 4.8

Every ij - FT_e space is an ij - $FT_{1/5}^{\psi^*}$ space.

PROOF.

Follows from the fact that every *ij*-fuzzy ψ^* closed set is an ij -fuzzy gs -closed set.

The converse of the above theorem is not true in general as the following example supports.

EXAMPLE 4.9

Let $X = \{a, b, c, d, e\},\$ $\tau_1 = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}\$ and $\tau_2 =$ $\{X, \phi, \{a\}, \{a, b\}, \{a, b, e\}, \{a, c, d\}, \{a, b, c, d\}\}.$ Then (X, τ_1, τ_2) is an ij - $FT_{1/5}^{\psi^*}$ space but not an *ij*- FT_e space since $\{d\} \in ij$ - $FGSC(X)$ but ${d} \notin ii-F\alpha C(X).$

THEOREM 4.9

Every ij - $F\alpha T_e$ space is an ij - $FT^{\psi^*}_{1/5}$ space.

PROOF.

Follows from the fact that every *ij*-fuzzy ψ^* closed set is an i *i*-fuzzy α *a*-closed set.

An ij - $FT^{\psi^*}_{1/5}$ space need not be an ij - $F\alpha T_e$ space as we see the next example.

EXAMPLE 4.10

Let X, τ_1 and τ_2 be as in Example 4.8. Then (X, τ_1, τ_2) is an ij - $FT_{1/5}^{\psi^*}$ space but not an ij - $F\alpha T_e$ space $\{c\} \in ij$ - $F\alpha GC(X)$ but $\{c\} \notin ji$ - $F\alpha C(X)$.

We introduce the following definitions.

DEFINITION 4.6

A fuzzy bitopological space (X, τ_1, τ_2) is called an ij- FT_k space if ij- $FGSC(X) = ij-F\psi^*C(X)$.

DEFINITION 4.7

A fuzzy bitopological space (X, τ_1, τ_2) is called an ij- $F\alpha T_k$ space if ij- $F\alpha GC(X) = ij$ - $F\psi^*C(X)$.

DEFINITION 4.8

A fuzzy bitopological space (X, τ_1, τ_2) is called an ij- FT_l space if ij- $FGSC(X) = ij-FG\alpha C(X)$.

DEFINITION 4.9

A fuzzy bitopological space (X, τ_1, τ_2) is called an ij- $F\alpha T_l$ space if ij- $F\alpha GC(X) = ij$ - $FG\alpha C(X)$.

We show that the class of ij - $F\alpha T_k$ spaces properly contains the class of ij - $F\alpha T_e$ spaces and is properly contained in the class of $i\hat{j}$ - $F\alpha T_i$ spaces. We also show that the class of ij - $F\alpha T_k$ spaces is the dual of the class of ij - $FT^{\psi^*}_{1/5}$ spaces to the class of ij - $F\alpha T_e$ spaces. Moreover we prove that ij - $F\alpha T_k$ ness and ij - $FT_{1/5}^{\psi^*}$ ness are independent from each other.

THEOREM 4.10

Every ij - $F\alpha T_e$ space is an ij - $F\alpha T_k$ space.

PROOF.

Let (X, τ_1, τ_2) be an ij- $F\alpha T_e$ space. Let $A \in ij$ - $F\alpha GC(X)$. Since (X, τ_1, τ_2) is an ij - $F\alpha T_e$ space, then $A \in ji$ - $F\alpha C(X)$. Hence, by using Theorem 3, we have $A \in i j$ - $F \psi^* C(X)$. Therefore (X, τ_1, τ_2) is an ij- $F\alpha T_k$ space.

The following example supports that the converse of the above theorem is not true in general.

EXAMPLE 4.11

Let X, τ_1 and τ_2 be as in the Example 4.2. Then (X, τ_1, τ_2) is an ij- $F\alpha T_k$ space but not an ij- $F\alpha T_e$ space since $\{a, c\} \in ij$ - $F\alpha GC(X)$ but ${a, c} \notin ji\text{-}Fac(X).$

THEOREM 4.11

Every ij- $F\alpha T_k$ space is an ij- $F\alpha T_l$ space.

PROOF.

Let (X, τ_1, τ_2) be an ij- $F\alpha T_k$ space. Let $A \in ij$ - $F\alpha GC(X)$. Since (X, τ_1, τ_2) is an ij - $F\alpha T_k$ space, then $A \in i j$ - $F \psi^* C(X)$. Hence, by using Theorem 3.2, we have $A \in ji\text{-}FG\alpha C(X)$. Therefore (X, τ_1, τ_2) is an ij- $F\alpha T_l$ space.

The following example supports that the converse of the above theorem is not true in general.

EXAMPLE 4.12

Let X, τ_1 and τ_2 be as in the Example 4.1. Then (X, τ_1, τ_2) is an ij- $F\alpha T_l$ space but not an ij- $F\alpha T_k$ space since ${b} \in ij-F\alpha GC(X)$ but {b} ∉ ji-F ψ ^{*}C(X).

THEOREM 4.12

A fuzzy bitopological space (X, τ_1, τ_2) is an ij- $F \alpha T_e$ space if and only if it is ij - $F \alpha T_k$ and ij - ${FT_{1/5}^\psi}^*$ space.

PROOF.

The necessity follows from the Theorems 4.9 and 4.10. For the sufficiency, suppose that (X, τ_1, τ_2) is both ij - $F\alpha T_k$ and ij - $FT_{1/5}^{\psi^*}$ space. Let $A \in i j$ - $F \alpha G C(X)$. Since (X, τ_1, τ_2) is $i j$ - $F \alpha T_k$ space, then $A \in i j$ - $F \psi^* C(X)$. Since (X, τ_1, τ_2) is an ij - $FT^{ \psi^*}_{1/S}$ space, then $A \in ji$ - $F\alpha C(X)$. Thus (X, τ_1, τ_2) is an ij- $F\alpha T_e$ space.

REMARK 4.12

 ij - $F\alpha T_k$ ness and ij - $FT^{\psi^*}_{1/5}$ ness are independent as it can be seen from the next two examples.

EXAMPLE 4.13

Let X, τ_1 and τ_2 be as in the Example 4.2. Then (X, τ_1, τ_2) is an ij- $F\alpha T_k$ space but not an ij- $FT_{1/5}^{\psi^*}$ space since $\{a,b\} \in ij$ - $F\psi^*C(X)$ but ${a, b} \notin ii-F\alpha C(X).$

EXAMPLE 4.14

Let X, τ_1 and τ_2 be as in the Example 4.1. Then (X, τ_1, τ_2) is an ij - $FT^{\psi^*}_{1/5}$ space since $\{b, c\} \in ij$ - $F\alpha GC(X)$ but $\{b, c\} \notin ij$ - $F\psi^*C(X)$.

DEFINITION 4.10

A fuzzy subset A of a fuzzy bitopological space (X, τ_1, τ_2) is called an ij-fuzzy ψ^* -open if its fuzzy complement is an ij-fuzzy ψ^* -closed of $(X, \tau_1, \tau_2).$

THEOREM 4.13

If (X, τ_1, τ_2) is an ij- $F\alpha T_k$ space, then for each $x \in X$, $\{x\}$ is either ij-fuzzy αg -closed or ijfuzzy ψ^* -open.

PROOF.

Suppose that (X, τ_1, τ_2) is an ij - $F\alpha T_k$ space. Let $x \in X$ and assume that $\{x\} \notin i \in F \alpha \mathcal{G} \mathcal{C}(X)$. Then $\{x\} \notin i \in F \alpha C(X)$ since every *i* t-fuzzy α closed set is an ij -fuzzy αg -closed set. So $X - \{x\} \notin \overline{\mathfrak{j}}$ *i*- $F\alpha O(X)$. Therefore $X - \{x\} \in \overline{\mathfrak{i}}$ *j*- $F\alpha GC(X)$ since X is the only ji-fuzzy α -open set which contains $X - \{x\}$. Since (X, τ_1, τ_2) is an ij- $F\alpha T_k$ space, then $X - \{x\} \in ij-F\psi^*C(X)$ or equivalently $\{x\} \in i j$ - $F \psi^* O(X)$.

THEOREM 4.14

Every ij - $F\alpha T_k$ space is an ij - ψ^* $_{FT_{1/5}}$ space.

PROOF.

Let (X, τ_1, τ_2) be an ij- $F\alpha T_k$ space. Let $A \in ij$ - $FG\alpha C(X)$, then $A \in i j$ - $F\alpha GC(X)$. Since (X, τ_1, τ_2) is an ij- $F\alpha T_k$ space, then $A \in ij$ - $F\psi^* C(X)$. Therefore (X, τ_1, τ_2) is an ij - ψ^* $FT_{1/5}$ space.

The following example supports that the converse of the above theorem is not true in general.

EXAMPLE 4.15

Let X, τ_1 and τ_2 be as in the Example 4.8. Then (X, τ_1, τ_2) is an ij- ψ^* $_{FT_{1/5}}$ space but not an ij- $F\alpha T_k$ space since $\{c\} \in ij-F\alpha GC(X)$ but ${c} \notin ij-F\psi^*C(X).$

We show that the class of ij - FT_k spaces properly contains the class of ij - FT_e spaces, and is properly contained in the class of ij - $F \alpha T_k$ spaces, the class of ij - FT_l spaces, and the class of ij - $F\alpha T_l$ spaces.

THEOREM 4.15

Every ij - FT_e space is an ij - FT_k space.

PROOF.

Let (X, τ_1, τ_2) be an ij- FT_e space. Let $A \in ij$ - $FGSC(X)$. Since (X, τ_1, τ_2) is an ij - FT_e space, then $A \in ji\text{-}Fac(X)$. Hence, by using Theorem 3.1, we have $A \in i j$ - $F \psi^* C(X)$. Therefore (X, τ_1, τ_2) is an ij- FT_k space.

The following example supports that the converse of the above theorem is not true in general.

EXAMPLE 4.16

Let X, τ_1 and τ_2 be as in the Example 4.2. Then (X, τ_1, τ_2) is an ij- FT_k space but not an ij- FT_e space since $\{a, c\} \in i\mathfrak{j}\text{-}FGSC(X)$ but $\{a, c\} \notin i\mathfrak{i}\text{-}$ $F\alpha C(X)$.

THEOREM 4.16

Every ij- FT_k space is an ij- $F\alpha T_k$ space.

PROOF.

Let (X, τ_1, τ_2) be an ij- FT_k space. Let $A \in ij$ - $F\alpha GC(X)$, then $A \in ij-FGSC(X)$. Since (X, τ_1, τ_2) is an *ij-FT*_k space, then $A \in ij$ - $F\psi^*C(X)$. Therefore (X, τ_1, τ_2) is an ij - $F\alpha T_k$ space.

The converse of the above theorem is not true as it can be seen from the following example.

EXAMPLE 4.17

Let X, τ_1 and τ_2 be as in the Example 4.5. Then (X, τ_1, τ_2) is an ij- $F \alpha T_k$ space but not an ij- FT_k space since ${b} \in ij-FGSC(X)$ but ${b} \notin ij$ - $F\psi^* C(X)$.

THEOREM 4.17

Every ij - FT_k space is an ij - FT_l space.

PROOF.

Let (X, τ_1, τ_2) be an ij- FT_k space. Let $A \in ij$ - $FGSC(X)$. Since (X, τ_1, τ_2) is an ij - FT_k space, then $A \in i j$ - $F \psi^* G C(X)$. Hence, by using Theorem 3.2, we have $A \in i \in F \mathcal{G} \alpha C(X)$. Therefore (X, τ_1, τ_2) is an ij - FT_l space.

The converse of the above theorem is not true as it can be seen from the following example.

EXAMPLE 4.18

Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a, c\}\}\$. Then (X, τ_1, τ_2) is an $ij - FT_l$ space but not an $ij - FT_k$ space since ${c} \in ij-FGSC(X)$ but ${c} \notin ij-F\psi^*C(X)$.

Next we prove that the dual of the class of ij - FT_l spaces to the class of ij - FT_k spaces is the class of ij - $F\alpha T_k$ spaces.

THEOREM 4.18

A fuzzy bitopological space (X, τ_1, τ_2) is an ij- FT_k space if and only if it is ij - $F\alpha T_k$ and ij - FT_l space.

PROOF.

The necessity follows from the Theorem 4.16 and 4.17. For the sufficiency, suppose that (X, τ_1, τ_2) is both ij - $F\alpha T_k$ and ij - FT_l space. Let $A \in ij$ -FGSC(X). Since (X, τ_1, τ_2) is an ij -FT_i space, then $A \in i j$ - $FG \alpha C(X)$. Then $A \in i j$ - $F\alpha GC(X)$. Since (X, τ_1, τ_2) is an ij - $F\alpha T_k$ space, then $A \in i j$ - $F \psi^* C(X)$. Therefore (X, τ_1, τ_2) is an ij- FT_k space.

THEOREM 4.19

A fuzzy bitopological space (X, τ_1, τ_2) is an ij- FT_e space if and only if it is ij - FT_k and ij - $FT_{1/5}^{\psi^*}$ space.

PROOF.

The necessity follows from the Theorems 4.8 and 4.15. For the sufficiency, suppose that (X, τ_1, τ_2) is both ij - FT_k and ij - $FT_{1/5}^{\psi^*}$ space.

Let $A \in ij$ -FGSC(X). Since (X, τ_1, τ_2) is an ij- FT_k space, then $A \in i j$ - $F \psi^* C(X)$. Since (X, τ_1, τ_2) is an ij - $FT_{1/5}^{\psi^*}$ space, the $A \in ji$ - $Fac(X)$. Therefore (X, τ_1, τ_2) is an ij - FT_e space.

The following diagram shows the relationships between the separation axioms discussed in this section (Diagram 2).

EXAMPLE 4.19

Let $X = \{a, b, c\}$ and δ_1 , δ_2 , δ_3 be fuzzy sets of X defined as follows

 $\delta_1 = \{(0.5, 0.5, 0.5), (0.2, 0, 0), (0.8, 1, 1)\}\$

 $\delta_2 = \{(0.5, 0.5, 0.5), (0, 0.1, 0), (1, 0.9, 1)\}\$

Clearly,

 $\tau_1 = \{0, 1, \delta_1, \delta_2, \delta_1 \vee \delta_2\}$ and

 $\tau_2 = \{0, 1, \delta_3\}$ are fuzzy topologies on X.

Let $f: (X, \tau_1) \to (X, \tau_2)$ be defined by $f(x) = x$ for each $x \in X$.

(arrows 1,2) $\delta_2 \in 12 \text{-} F \alpha T_e \wedge 12 \text{-} F T_k$ space but not an 12- FT_e space. Since $\{b\} \in 12$ - $FGSC(X)$ but ${b} \notin 21$ - $Fac(X)$.

(arrow 3,6) $\delta_1 \in 12$ - $F \alpha T_k \wedge 12$ - FT_l space but an 12- FT_k space. Since $\{c\} \in 12$ - $FGSC(X)$ but ${c} \notin 12$ - $F\psi^*C(X)$.

(arrow 8,4) $\delta_2 \in 12$ - $FT_{1/5} \wedge 12$ - $F \alpha T_k$ space but an 12- $F \alpha T_e$ space. Since $\{a, c\} \in 12$ - $F\alpha GC(X)$ but an $\{a, c\} \notin 21$ - $F\alpha C(X)$.

(arrow 5) $\delta_2 \in 12$ - $F \alpha T_l$ space but an 12- FT_e space. Since ${c} \in 12$ - $F\alpha G C(X)$ but ${c} \notin 21$ - $Fac(X).$

(arrow 7) $\delta_2 \in 12$ - $F \alpha T_l$ space but an 12- FT_e space. Since ${c} \in 12$ - $FGSC(X)$ but ${c} \notin 21$ - $F\alpha C(X)$.

(arrow 9) $\delta_2 \in 12$ - ψ^* $_{FT_{1/5}}$ space but an 12- $F\alpha T_k$ space. Since $\{c\} \in 12$ - $F\alpha GC(X)$ but ${c} \notin 12$ - $F\psi^*C(X)$.

(arrow 10) $\delta_2 \in 12 \cdot \psi^*$ $_{FT_{1/5}}$ space but an 12- $FT_{1/5}$ space. Since $\{b, c\} \in 12$ - $FG\alpha C(X)$ but ${b, c} \notin 21$ - $Fac(X)$.

(arrow 11) $\delta_1 \in 12$ - $FT_{1/5}^{\psi^*}$ space but 12- $FT_{1/5}$ space. Since $\{a, b\} \in 12$ - $FG\alpha C(X)$ but ${a, b} \notin 21$ - $F\alpha C(X)$.

*ij***-FUZZY** $ψ^*$ **-CONTINUOUS AND** *ij***-FUZZY** [∗] **-IRRESOLUTE FUNCTIONS**

We introduce the following definition.

DEFINITION 5.1

A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called ij-fuzzy ψ^* -continuous if $\forall V \in j$ - $FC(Y), f^{-1}(V) \in ij-F\psi^*C(X).$

 i -fuzzy continuous $\longrightarrow i$ i-fuzzy g -continuous $\longrightarrow i$ -fuzzy αg -continuous $\longrightarrow i$ -fuzzy gp -continuous

DIAGRAM 3

The following diagram shows the relationships of ij-fuzzy ψ^* -continuous functions with some other functions discussed in this section (Diagram 3).

EXAMPLE 5.1

Let $X = \{a, b, c\}$. The fuzzy sets λ, μ, ν, A, B are defined on X as follows,

 $\lambda: X \to [0, 1]$ is defined as $\lambda(a) = 0.4$, $\lambda(b) =$ $0.5, \lambda(c) = 0.5.$

 $\mu: X \to [0, 1]$ is defined as $\mu(a) = 0.4, \mu(b) =$ $0.4, \mu(c) = 0.5.$

 $v: X \rightarrow [0, 1]$ is defined as $v(a) = 0.3, v(b) =$ $0.5, v(c) = 0.2.$

 $A: X \to [0, 1]$ is defined as $A(a) = 0.4, A(b) =$ $0.3, A(c) = 0.5.$

 $B: X \to [0, 1]$ is defined as $B(a) = 0.5, B(b) =$ $0.4, B(c) = 0.6$

Then $\tau_1 = \{0,1,\lambda,\mu,\nu\}$ and

 $\tau_2 = \{0, 1, A, B\}$ are fuzzy topologies on X.

Let $f: (X, \tau_1) \to (X, \tau_2)$ be defined by $f(a) = a$ for each $x \in X$.

(arrows 1,5) If f is defined by $f(a) = b$, $f(b) = c$ and $f(c) = a$. We have f is 12- Fg continuous, but it is not 1-Fuzzy continuous. Since there exist ${b} \in 1-FC(X)$ but $f^{-1}(\lbrace b \rbrace) = \lbrace a \rbrace \notin 1\text{-}FC(X)$. Also, f is 12- $Fg\alpha$ continuous but it is not 2-Fuzzy continuous. Since there exist $\{b, a\} \in 2\text{-}FC(X)$ such that $f^{-1}(\lbrace b, a \rbrace) = \{a, c\} \notin 2\text{-}FC(X).$

(arrows 4,6) If f is defined by $f(a) = a, f(b) =$ c and $f(c) = b$. We have f is 12-Fuzzy ψ^* continuous, but it is not 21-Fuzzy 2-continuous. Since there exist ${a} \in 2\text{-}FC(X)$ but

 $f^{-1}(\{a\}) = \{c\} \notin 12\hbox{-}FGC(X).$ Also, f is not 2-Fuzzy continuous. Since there exist ${b, a} \in 2$ - $FC(X)$ such that $f^{-1}(\{b,a\}) = \{a,b\} \notin \{12-a\}$ $FPC(X)$.

(arrows 7,15) If f is defined by $f(a) = c$, $f(b) =$ a and $f(c) = b$. We have f is 12- $Fspg$ continuous ∧ 21-Fuzzy semi-Pre Continuous, but it is not 12 - Fs , continuous. Since there exist ${b} \in 21$ - $FC(X)$ such that $f^{-1}({b}) =$ ${b, c} \notin 12\text{-}FGPC(X).$

(arrow 2) If f is defined by $f(a) = f(b) = c$ and $f(c) = a$. We have f is 12-Fagcontinuous, but it is not 2-Fuzzy continuous. Since there exist $\{c\} \in 2\text{-}\mathit{FC}(X)$ but $f^{-1}(\{c\}) = 0$ ${a} \notin 2 \text{-}FGC(X).$

(arrow 3) If f is defined by $f(c) = f(a) = b$ and $f(b) = a$. We have f is 12-Fapcontinuous, but it is not 2-Fuzzy continuous. Since there exist ${b} \in 2$ - $FPC(X)$ but $f^{-1}(\{b\}) = \{a\} \notin 2\text{-}FC(X).$

(arrow 8) If f is defined by $f(a) = b$, and $f(b) = f(c) = a$. We have f is 12-Fgspcontinuous, but it is not 21-Fuzzy semicontinuous.

(arrow 9) If f is defined by $f(a) = c, f(b) = a$ and $f(c) = b$. We have f is 21-Fuzzy α continuous, but it is not 1-Fuzzy continuous.

(arrow 10) If f is defined by $f(a) = f(b) = c$ and $f(c) = b$. We have f is 12- $F \alpha g$ -continuous, but it is not 2-Fuzzy continuous. Since there exist $\{c\} \in 21$ - $F\alpha C(X)$ such that $f^{-1}(\{c\}) =$ ${a, b} \notin 12 \text{-}FGC(X).$

(arrow 11) If f is defined by $f(b) = f(c) = b$ and $f(a) = c$. We have f is 12-*Fgs*-continuous, but it is not 21-Fuzzy α -continuous.

(arrow 12) If f is defined by $f(a) = f(c) = b$ and $f(b) = a$. We have f is 21-Fuzzy semi continuous, but it is not 21-Fuzzy α -continuous.

(arrow 13) If f is defined by $f(a) = f(b) = c$ and $f(c) = b$. We have f is $12-Fg\alpha$ -continuous, but it is not 2-Fuzzy continuous.

(arrow 14) If f is defined by $f(b) = f(c) = b$ and $f(a) = c$. We have f is 12-Fgspcontinuous. Since there exist ${b} \in 2-FgC(X)$ but it is not $f^{-1}(\{b\}) = \{c\} \notin 12\text{-}FC(X)$.

(arrow 16) If f is defined by $f(a) = f(b) =$ $f(c) = a$. We have f is 12-Fgsp-continuous, but it is not 21-Fuzzy semi continuous.

(arrow 17) If f is defined by $f(c) = b$, $f(b) = a$ and $f(a) = c$. We have f is 12-Fuzzy semi precontinuous, but it is not 21-Fuzzy semicontinuous.

(arrow 18) If f is defined by $f(a) = b$, $f(b) = c$ and $f(c) = a$. We have f is 12- $Fspg$ continuous, but it is not 12-Fuzzy α -continuous. Since there exist ${b} \in 1-FC(X)$ such that $f^{-1}(\{b\}) = \{a\} \notin 1\text{-}FC(X).$

THEOREM 5.1

Every $i\ell$ -fuzzy α -continuous function is $i\ell$ -fuzzy ψ^* -continuous.

The following example supports that the converse of the above theorem is not true in general.

EXAMPLE 5.2

Let $X = \{a, b, c\}$ and $Y = \{\alpha, \beta, \gamma\}$

Define fuzzy sets λ_1, λ_2 and μ_1 as follows

$$
\lambda_1(a) = 0.4, \lambda_1(b) = 0.3, \lambda_1(c) = 0.2
$$

 $\lambda_2(a) = \mu_1(a) = 0.6, \quad \lambda_2(b) = \mu_1(\beta) = 0.7,$ $\lambda_2(c) = \mu_1(\gamma) = 0.8$

Let τ_1 , τ_2 and σ_1 , σ_2 be defined as follows

$$
\tau_1(\lambda) = \begin{cases} 1 & ,if \ \lambda = 0 \ or \ 1 \\ 1/2 & ,if \ \lambda = \lambda_1 \\ 0 & ,otherwise \end{cases}
$$

$$
\tau_2(\lambda) = \begin{cases}\n0 & , if \ \lambda = 0 \text{ or } 1 \\
1/2 & , if \ \lambda = \lambda_1 \\
1 & , otherwise\n\end{cases}
$$
\n
$$
\sigma_1(\mu) = \begin{cases}\n1 & , if \ \mu = 0 \text{ or } 1 \\
1/2 & , if \ \mu = \mu_1 \\
0 & , otherwise\n\end{cases}
$$
\n
$$
\sigma_2(\mu) = \begin{cases}\n0 & , if \ \mu = 0 \text{ or } 1 \\
1/2 & , if \ \mu = \mu_1 \\
1 & , otherwise\n\end{cases}
$$

Then the function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is defined by

$$
f(a) = \alpha, f(b) = \beta, f(c) = \gamma.
$$

Then f is not 21-fuzzy α -continuous function.

Since $\mu_1 \in 2 \text{-}FC(Y)$ but $f^{-1}(\mu_1) = \lambda_2 \notin 21$ - $F\alpha C(X)$.

However f is 12-Fuzzy ψ^* -continuous function.

THEOREM 5.2

Every ij-fuzzy ψ^* -continuous function is ij-fuzzy $a\alpha$ -continuous.

The following example supports that the converse of the above theorem is not true in general.

EXAMPLE 5.3

Let $X = Y = \{a, b, c\}$

Define fuzzy sets λ , δ , β : $X = Y \rightarrow [0, 1]$ by the equation

 $\lambda(a) = 0.5$, $\lambda(b) = 0$, $\lambda(c) = 0$

$$
\delta(a) = 0, \delta(b) = 0.6, \delta(c) = 0
$$
 and

$$
\beta(a) = 0.6, \beta(b) = 0.6, \beta(c) = 1
$$

Then $\tau_1 = \{1, 0, \lambda, \beta\}$ and

 $\tau_2 = \{1, 0, \delta\}$ are fuzzy topologies on X and Y.

Let δ be the non fuzzy open set in (X, τ_1) .

Then

 $\tau(\delta) = \{ 1, 0, \lambda, \delta, \lambda \vee \delta \}.$

Let $\lambda_1(a) = 0.3$, $\lambda_1(b) = 0$, $\lambda_1(c) = 0$ be the fuzzy subset in (X, τ_1) .

If $f : (X, \tau_1) \to (Y, \tau_2)$ be defined by

 $f(a) = a, f(b) = b, f(c) = c,$

then f is not 12-Fuzzy ψ^* -continuous function.

Since $\delta \in 2\text{-}FC(Y)$ but $f^{-1}(\delta) = \beta \notin 12$ $F\psi^* C(X)$.

However f is 12 - Fga -continuous function.

THEOREM 5.3

If $f_1: (X_1, \tau_1, \tau_2) \to (Y_1, \sigma_1, \sigma_2)$ and $f_1:$ $(X_2, \tau_1^*, \tau_2^*) \to (Y_1, \sigma_1^*, \sigma_2^*)$ be two *ij*-fuzzy ψ^* continuous functions. Then the function $f: (X_1 \times X_2, \tau_1 \times \tau_1^*, \tau_2 \times \tau_2^*) \rightarrow$ $(Y_1 \times Y_2, \sigma_1 \times \sigma_1^*, \sigma_2 \times \sigma_2^*$ defined by $f(x_1, x_2) = (f(x_1), f(x_2))$ is *ij*-fuzzy ψ ∗ continuous.

PROOF.

Let $V_1 \in j$ - $FO(Y_1)$ and $V_2 \in j$ - $FO(Y_2)$. Since f_1 and f_2 are two ij-fuzzy ψ^* -continuous, then $f^{-1}(V_1) \in i j$ - $F \psi^* O(X_1)$ and $f^{-1}(V_2) \in i j$ - $F\psi^*O(X_2)$. Hence, by using Theorem 3.5, we have $f^{-1}(V_1) \times f^{-1}(V_2) \in i j$ - $F \psi^* O(X_1 \times X_1)$.

We introduce the following definition.

DEFINITION 5.2

A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called i*i*-fuzzy *-irresolute if $\forall V \in ij$ - $F\psi^*C(Y), f^{-1}(V) \in ij$ - $F\psi^*C(X)$.

THEOREM 5.4

Every ij-fuzzy ψ^* -irresolute function is ij-fuzzy ψ^* -continuous.

The following example supports that the converse of the above theorem is not true in general.

EXAMPLE 5.4

Let $X = Y = \{a, b, c\}.$

Define fuzzy sets λ , δ_1 , $\delta_2 : X \rightarrow [0, 1]$ by the equation

$$
\lambda(a) = 0.4, \lambda(b) = 0, \lambda(c) = 1
$$

$$
\delta_1(a) = 0, \delta_1(b) = 0.5, \delta_1(c) = 0
$$
 and

$$
\delta_2(a) = 0, \delta_2(b) = 0, \delta_2(c) = 0.6
$$

And $\gamma: Y \rightarrow [0,1]$ defined by

$$
\gamma(a) = 1, \gamma(b) = 0.5, \gamma(c) = 0
$$

Then $\tau_1 = \{1, 0, \lambda\}$ and

 $\tau_2 = \{1, 0, \gamma\}$ is a fuzzy topologies on X and Y.

Let δ_1 be the non fuzzy open set in (X, τ_1) , then $\tau_1(\delta_1) = \{1, 0, \lambda, \delta_1, \lambda \vee \delta_1\}$ and δ_2 be the non fuzzy open set in (Y, τ_2) , then $\tau_2(\delta_2) =$ $\{1, 0, \gamma, \delta_2, \gamma \vee \delta_2\}.$

Let $f : (X, \tau_1) \to (Y, \tau_2)$ be defined by

 $f(a) = b, f(b) = a, f(c) = c$

Then f is not 12-Fuzzy ψ^* -irresolute function.

Since $\delta_1 \in 12$ - $F\psi^* C(Y)$ but $f^{-1}(\delta_1) = \gamma \notin 12$ - $F\psi^* C(X)$.

However f is 12-Fuzzy ψ^* -continuous function.

THEOREM 5.5

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and g : $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be any two functions. Then

- (1) $g \circ f$ is ij-fuzzy ψ^* -continuous if g is j-fuzzy continuous and f is ij-fuzzy ψ^* -continuous.
- (2) $g \circ f$ is ij-fuzzy ψ^* -irresolute if both f and g are ij-fuzzy ψ^* -irresolute.

(3) $g \circ f$ is ij-fuzzy ψ^* -continuous if g is ijfuzzy ψ^* -continuous and f is ij-fuzzy ψ^* irresoloute.

PROOF.

Let $V \in i$ - $FC(Z)$, since g is *i*-fuzzy continuous, then $g^{-1}(V) \in j$ -FC (Y) . Since f is ij-fuzzy ψ^* continuous, then we have $f^{-1}(g^{-1}(V)) \in i j$ - $F\psi^*C(X)$. Consequently, $g \circ f$ is ij-fuzzy ψ^* continuous.

(2)- (3) Similarly.

THEOREM 5.6

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an *ij*-fuzzy ψ^* -continuous function. If (X,τ_1,τ_2) is ij - $FT_{1/5}^{\psi^*}$ space, then f is ii -fuzzy α -continuous function.

PROOF.

Let $V \in j$ - $FC(Y)$. Since f is ij-fuzzy ψ^* continuous, then $f^{-1}(V) \in i j$ - $F \psi^* C(X)$. Since (X, τ_1, τ_2) is an ij- $FT_{1/5}^{\psi^*}$ space, then $f^{-1}(V) \in$ $ji-F\alpha C(X)$. Consequently, f is ji -fuzzy α continuous.

THEOREM 5.7

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an *ij*-fuzzy αg -continuous function. If (X, τ_1, τ_2) is an ij- $F\alpha T_k$ space, then f is ij-fuzzy ψ^* -continuous.

PROOF.

Let $V \in j$ - $FC(Y)$. Since f is an ij-fuzzy αg contiuous function, thus $^{-1}(V) \in ij$ - $F\alpha GC(X)$. Since (X, τ_1, τ_2) is an ij - $F\alpha T_k$ space, then $f^{-1}(V) \in i j$ - $F \psi^* C(X)$. Consequently, f is ij-fuzzy ψ^* -continuous.

THEOREM 5.8

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an *ij*-fuzzy $g\alpha$ -continuous function. If (X, τ_1, τ_2) is *ij*- ψ^* $_{FT_{1/5}}$ space, then f is ij -fuzzy ψ^* -continuous.

PROOF.

Let $V \in j$ - $FC(Y)$. Since f is an ij-fuzzy $g\alpha$ continuous function, thus $f^{-1}(V) \in i j$ - $FG\alpha C(X)$. Since (X, τ_1, τ_2) is an $ij\text{-}\psi^*$ $FT_{1/5}$ space, then $^{-1}(V) \in ij$ - $F\psi^* C(X)$. Consequently, f is ij-fuzzy ψ^* -continuous.

THEOREM 5.9

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an *ij*-fuzzy gs-continuous function. If (X, τ_1, τ_2) is ij - FT_k space, then f is ij-fuzzy ψ^* -continuous.

PROOF.

Let $V \in j$ - $FC(Y)$. Since f is an ij-fuzzy gscontinuous function, thus $f^{-1}(V) \in i j$ - $FGSC(X)$. Since (X, τ_1, τ_2) is an ij - FT_k space, then $f^{-1}(V) \in i j$ - $F \psi^* C(X)$. Consequently, f is ij-fuzzy ψ^* -continuous.

THEOREM 5.10

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be onto, ij-fuzzy ψ^* -irresolute and *ji*-fuzzy α -closed. If (X, τ_1, τ_2) is ij - $FT^{\psi^*}_{1/5}$ space, then (Y,σ_1,σ_2) is also an ij - $FT_{1/5}^{\psi^*}$ space.

PROOF.

Let $V \in i j$ - $F \psi^* C(Y)$. Since f is ij-fuzzy ψ^* irresolute, then $f^{-1}(V) \in i j$ - $F \psi^* C(X)$. Since (X, τ_1, τ_2) is ij - $FT_{1/5}^{\psi^*}$ space, then $f^{-1}(V) \in ji$ - $Fac(X)$. Since f is *ji*-fuzzy α -closed and onto. Then we have $V \in ji\text{-}Fac(Y)$. Therefore (Y,σ_1,σ_2) is also an ij - $FT_{1/5}^{\psi^*}$ space.

We introduce the following definition.

DEFINITION 5.3

A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called an ij-fuzzy pre- ψ^* -closed if $A \in i$ j- $F\psi^*C(X), f(A) \in ij$ - $F\psi^*C(Y)$.

THEOREM 5.11

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be onto, ij-fuzzy $g\alpha$ -irresolute and ij-fuzzy pre- ψ^* -closed. If (X, τ_1, τ_2) is ij - ψ^* $_{FT_{1/5}}$ space, then (Y, σ_1, σ_2) is also an ij- ψ^* $_{FT_{1/5}}$ space.

PROOF.

Let $V \in i j$ -FG $\alpha C(Y)$. Since f is ij-fuzzy $g\alpha$ irresolute, then $f^{-1}(V) \in ij$ -FG $\alpha C(X)$. Since (X, τ_1, τ_2) is an ij- ψ^* $_{FT_{1/5}}$ space. Since f is ij fuzzy pre- ψ^* -closed and onto. Then we have $f(f^{-1}(V)) = V \in ij$ -F ψ Therefore (Y, σ_1, σ_2) is also an ij - ψ^* $_{FT_{1/5}}$ space.

THEOREM 5.12

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be onto, *ij*-fuzzy αg -irresolute and ij-fuzzy pre- ψ^* -closed. If (X, τ_1, τ_2) is an ij- $F\alpha T_k$ space, then (Y, σ_1, σ_2) is also an ij - $F\alpha T_k$ space.

PROOF.

Let $V \in i j$ - $F \alpha G C(Y)$. Since f is $i j$ -fuzzy αg irresolute, then $f^{-1}(V) \in ij$ - $F \alpha G C(X)$. Since (X, τ_1, τ_2) is an ij- $F \alpha T_k$ space, then $f^{-1}(V) \in$ ij- $F\psi^* C(X)$. Since f is ij-fuzzy pre- ψ^* -closed and onto. Then we have $f(f^{-1}(V)) = V \in ij$. $F\psi^*C(Y)$. Therefore, (Y, σ_1, σ_2) is also an ij- $F \alpha T_k$ space.

THEOREM 5.13

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be onto, *ij*-fuzzy gs-irresolute and ij-fuzzy pre- ψ^* -closed. If (X, τ_1, τ_2) is an ij - FT_k space, then (Y, σ_1, σ_2) is also an ij - FT_k space.

PROOF.

Let $V \in i j$ -FGSC(Y). Since f is $i j$ -fuzzy gsirresolute, then $f^{-1}(V) \in ij$ -FGSC(X). Since (X, τ_1, τ_2) is an ij- FT_k space, then $f^{-1}(V) \in ij$ - $F\psi^*C(X)$. Since f is ij-fuzzy pre- ψ^* -closed and onto. Then we have $f(f^{-1}(V)) = V \in i j$. $F\psi^*C(Y)$. Therefore (Y, σ_1, σ_2) is also an ij- FT_k space.

REFERENCES

- [1]. M. Pawlak. "Rough sets". International Journal of Computer and Information Sciences, Vol.11, Iss.5, PP.341-356, 1982.
- [2]. Weidong Tang, Jinzhao Wu, and Dingwei Zheng, "On Fuzzy Rough Sets and Their Topological Structures", Mathematical Problems in Engineering, Volume 2014, Article ID 546372, 17 Pages, 2014.
- [3]. Pao-Ming pu and Ying-Ming Liu, "Fuzzy topology I-Neighborhood structure of fuzzy point and Moore-Smith Convergence", J. Math. Anal. Appl. Vol.6, PP.571-599, 1980.
- [4]. R. K. Saraf, G, Navalgi and M, Khanna, "On fuzzy semi-pre-generalized closed sets", Bull. Malays. Math. Sci. Soc., Vol.28, Iss.1, PP.19-30, 2005.
- [5]. S. S. Thakur, Surendra Singh, "On fuzzy semi-preopen sets and fuzzy semiprecontinuity", Fuzzy Sets and systems, Vol.98, PP.383-391, 1998.
- [6]. C. L. Chang, "Fuzzy topological spaces", J. Math. Analysis Appl., Vol.24, PP.182-190, 1968.
- [7]. K. K. Azad, "On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity", J. Math. Anal. Appl. Vol.82, Iss.1, PP.14-32, 1981.
- [8]. T. Fukutake, R.K. Saraf, M. Caldas and S. Mishra, "Fuzzy generalized preclosed sets", Bull of Fukuoka Univ. of Edu, Vol.52, Part III, PP.11-20, 2003.
- [9]. Jin Han Park and Jin Keun Park, "Regular generalized closed sets in fuzzy topological spaces", J. Indian pure Appl. Math. Vol.34, PP.1013-1024.
- [10]. R. K. Saraf and M. Khanna, "Fuzzy generalized semi-closed sets", J. Indian Acad. Math. Vol.25, Iss.1, PP.133-143, 2003.
- [11]. Ismail Ibedou, "Separation axioms in fuzzy bitopological spaces", Journal of

Intelligent and Fuzzy systems, Vol.27, PP.943-951, 2014.

- [12]. M. A. Abd Allah, A.S. Nawar, " ψ^* -closed sets in topological spaces", 'Wulfenia' J. Vol.21, Iss.9, PP.391-401, 2014.
- [13]. R. K. Saraf, M.Caldas and M. Mishra, "Results via, $Fg\alpha$ -closed sets and Fg closed sets", preprint.
- [14]. S. S. Thakur and R. Malviya, "Generalized closed sets in fuzzy topological spaces", Math. Note, Vol.38, PP.137-140, 1995.
- [15]. A. Vadivel, K. Devi and D. Sivakumar, "Fuzzy generalized pre regular closed sets", Antartica J. Math. 2012.
- [16]. L. A. Zadeh, "Fuzzy sets", Information and Control, Vol.81, PP.338-353, 1965.
- [17]. S. S. Thakur and Mishra, "Fuzzy g^* -closed sets", International Journal of Theoretical and Applied Sciences, Vol.2, Iss.2, PP.28- 29, 2010.
- [18]. L.Vinayagamoorthi and N. Nagaveni, "Generalized αb -closed sets in fuzzy topological spaces", International Journal of Pure and Applied Mathematics, Vol.109, Iss.10, PP.151-159, 2016, Issn.1314-3395.
- [19]. R. K. Saraf and M.Caldas. "Fuzzy semigeneralized closed sets", Universidad catolica del Norte Antofagasta-Chile, Vol.25, Iss.2, PP.127-138, 2001.
- [20]. S. Murugasen and P. Thangavelu, Fuzzy pre-semi-closed Sets, Bull. Malays. Math. Sci. Sec.2, Vol.31, Iss.2, PP.223-232, 2008.
- [21]. K. M. Abd El-Hakeim, Generalized semicontinuous mappings in fuzzy topological spaces, J. Fuzzy Math., Vol.7, Iss.3, PP.577-589, 1999.
- [22]. H. Maki, T. Fukutake, M. Kojima and H. Harada, Generalized closed sets fuzzy topological spaces I, Meetings on Topological spaces Theory and its Applications, PP.23-36, 1998.
- [23]. S. Sampath Kumar, On decomposition of pairwise continuity, Bull. Cal. Math. Soc. Vol.89, PP.441-446, 1997.
- [24]. G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and systems, Vol.86, Iss.1, PP.93-100, 1997.
- [25]. M. Caldas, G, Navalgi and R, Saraf, On some functions concerning fuzzy pg closed sets, Proyecciones, Vol.25, Iss.3, PP. 262-271, 2006.
- [26]. M. Lellis Thivagar, Nirmala Reebecca Paul and Saeid Jafari, On New Class of Generalized Closed Sets, Annais of the University of Craiova, Mathematics and

Computer Science Series, Vol.38, Iss.3, PP.84-93, 2011.

- [27]. A. Vadivel and M. Palanisamy, Fuzzy Pairwise e -Continuous Mappings on Fuzzy Bitopological Spaces, Annals of Fuzzy Mathematics and Informatics, 11(2), (2016), 315- 325.
- [28]. A. Vadivel and M. Palanisamy, Fuzzy Quasi SemiOpen Sets and Fuzzy Quasi Semi Connectedness between Fuzzy Sets in Fuzzy Bitopological Spaces, Journal of Fuzzy Mathematics, 24(2), (2016).