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NUMERICAL STABILITY OF FICK’S SECOND LAW TO HEAT FLOW 

STEPHEN I. OKEKE*, NWAGOR PETERS** 

ABSTRACT 

In this paper we shall discuss the stability of Fick’s second law to the study of 

heat flow using Forward Time, Centered Space or FTCS Approximation. We shall 

derive one dimensional heat equation from the Fick’s law second with the 

constant of proportionality 0D called the diffusion constant given ),( tx  and 

),( txu which represent the energy density and temperature respectively at the 

point x meters along a thin rod at time t  (in seconds) having known substances 

namely a constant density ρ and specific heat C . The Fick’s law is a general 

diffusion equation.  

However, diffusion is the transport of a material or chemical by molecular 

motion from a region of high concentration to a region of low concentration until 

they are eventually uniformly distributed. We shall replace the diffusion constant 

D  with an exponential 
2

)( 2x
hn 

  such that ,...3,2,1n  and a constant 

.1.0h   

Numerically, we shall use table to illustrate the effect of h (a fixed value) on the 

stability of the heat Fick’s equation with the help of a working Matlab. 

Keywords: Fick’s Law, Heat Flow, Thermal Diffusivity, Stability, Finite Difference 

Approximation.  

INTRODUCTION 

Most models can be formulated using ordinary 

differential equations but more complicated 

problems of advanced physics and engineering 

involve working with partial differential equations 

(PDEs). 

However, many PDE models involve the study of 

how a certain quantity changes with time and 

space in which conservation law plays an 

important rule. It is necessary to approximate the 

solution of these PDEs numerically in order to 

investigate the predictions of the mathematical 

models, as exact solutions are usually unavailable 

or rare to obtain. Fick’s law of diffusion was 

derived by Adolf Fick in1855 which describe 

diffusion that can be used to solve for the 

diffusion coefficient, .D Fick’s first law relates the 

diffusive flux to the concentration under the 

assumption of steady state.  
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It postulates that the flux goes from origins of 

high concentration to regions of low 

concentration, with a magnitude that is 

proportional to the concentration gradient-

spactial derivative. Fick’s second law predicts 

how diffusion causes the concentration to change 

with time. The second law of Fick is a partial 

differential equation in one dimensional. 

SOME RELATED LITERATURE REVIEW 

Many scientists looked at heat flows in some 

ways. 

Abarbanel and Ditkowski (2000) studied rate of 

convergence of error bounds and their temporal 

behavior using the finite difference 

approximations. The result determined the 

dependence of the error bounds on mesh size 

and time. 

Fukagata and Kesagi (2002) studied the cylindrical 

system using highly energy conservative finite 

difference method. The result obtained was that 

the energy conservation in discretized space is 

satisfied which holds for both equally and 

unequally spaced mesh on cylindrical coordinate 

system. 

Thankane and Stys (2009) studied the effective 

algorithms based on finite difference method for 

linear and non linear beam equations. The 

method used was the convergence analysis of the 

algorithms. They obtained that the number of 

solution of beam equations is given by designing 

Mathmatica Module. 

Kalyani and Ramchandra (2013) studied the one 

dimensional Heat equation with initial and 

boundary conditions using finite difference 

method and other numerical methods. They 

obtained that the solution of Heat equation was 

given as a polynomial of two variables by using 

double interpolation. 

Raffaele, and Beatrice (2014) studied the 

numerical solution of partial differential equation 

(PDE) with oscillatory solutions by considering 

diffusion equation ut= duxx. They used Finite 

difference method which gives accurate and 

efficient solution of PDE- a diffusion problem with 

mixed boundary conditions. 

On my best of knowledge, there are no more 

papers related to the stability of one dimensional 

heat equation. In order to remove the lack in the 

literature, we shall analyze the stability of one 

dimensional heat equation solved with the 

method of finite approximation by replacing the 

diffusion constant D with an exponential .nh  

DERIVATION OF HEAT EQUATION 

If ),( tx  and ),( txu  represent the energy 

density and temperature, then  

),(),( txCutx                           (1) 

where  

  represents density and C  represents specific 

heat. 

Applying the conversation law, we obtain 

0 xtCu                                                       (2) 

Where ),( tx   denotes the flux of the 

quantity at x at time t  which measures the 

amount of the quantity crossing section at x  and 

at t . 

Since, the heat flow follows a diffusion model, 

xKu                                                               (3) 

where K  represents the thermal conductivity. 

Combining (2) and (3) gives 

0 xxt KuCu                                                    (4) 

Equivalently, 
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Where 
C

K
D


  is called the diffusivity or 

thermal diffusivity. 

The last equation is called heat equation. 

METHODS OF ANAYSIS 

The forward difference in time and central 

difference in space approximations are used to 

analyze the heat equation. 

The forward difference in time is given as:  

t

uu
tx

t

u
m

i

m

i









1

),(             (6)  

The central difference approximation in space is 

given as 
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Numerically, the heat equation becomes:  
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Equivalently, we have: 
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        (9)  

for 
2

)( 2x
hn 

  ; ,...3,2,1n  

In numerical analysis, the Lax Equivalence 

theorem is the fundamental theorem in the 

analysis of finite difference methods for the 

numerical solution of partial differential 

equations. It states that for a consistent finite 

difference method for a well-posed linear initial 

value problem, the method is convergent if and 

only if it is stable.  

NUMERICAL STABILITY OF THE GIVEN 

HEAT EQUATION 

The table below shows some numerical values of 

hn where n = 1,2,3, … with some equidistant 

values x and a fixed change in x; Δx=0.2. 
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Figure 1.A table showing numerical values involving h
n
 

   Δx=0.2     

n h D=h^n x x(new) Δx.^2 D/Δx.^2 D/Δx.^2/2 

1 0.1 0.1 2 2 4 0.025 0.0125 

2 0.1 0.01 4 2.2 4.84 0.00206612 0.001033 

3 0.1 0.001 6 2.4 5.76 0.00017361 8.68E-05 

4 0.1 0.0001 8 2.6 6.76 1.4793E-05 7.4E-06 

5 0.1 0.00001 10 2.8 7.84 1.2755E-06 6.38E-07 

6 0.1 0.000001 12 3 9 1.1111E-07 5.56E-08 

7 0.1 1E-07 14 3.2 10.24 9.7656E-09 4.88E-09 

8 0.1 1E-08 16 3.4 11.56 8.6505E-10 4.33E-10 

9 0.1 1E-09 18 3.6 12.96 7.716E-11 3.86E-11 

10 0.1 1E-10 20 3.8 14.44 6.9252E-12 3.46E-12 

11 0.1 1E-11 22 4 16 6.25E-13 3.13E-13 

12 0.1 1E-12 24 4.2 17.64 5.6689E-14 2.83E-14 

13 0.1 1E-13 26 4.2 17.64 5.6689E-15 2.83E-15 

14 0.1 1E-14 28 4.2 17.64 5.6689E-16 2.83E-16 

15 0.1 1E-15 30 4.2 17.64 5.6689E-17 2.83E-17 

16 0.1 1E-16 32 4.2 17.64 5.6689E-18 2.83E-18 

17 0.1 1E-17 34 4.2 17.64 5.6689E-19 2.83E-19 

18 0.1 1E-18 36 4.2 17.64 5.6689E-20 2.83E-20 

19 0.1 1E-19 38 4.2 17.64 5.6689E-21 2.83E-21 

20 0.1 1E-20 40 4.2 17.64 5.6689E-22 2.83E-22 

 

DISCUSSION OF RESULTS 

The table above showed the condition on the 

diffusion constant D  with an exponential 

2

)( 2x
hn 

  such that ,...3,2,1n  and a 

constant 1.0h  for which the system is stable. 

CONCLUSION 

The work is concluded by proving the numerical 

stability condition.  

From (9): 
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The right inequality is satisfied automatically, 

while the left inequality can be re-written in the 

form: 
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