

A REVIEW ON VARIOUS MEDICINAL PLANTS WITH FOR NEPHROPROTECTIVE ACTIVITY

MOHAMMAD ASIF^{*}

ABSTRACT

Nephrotoxicity is a poisonous effect of some substances, both toxic chemicals and medication, on the kidneys. There are various forms of toxicity. Nephrotoxicity should not be confused with the fact that some medications have a predominantly renal excretion and need their dose adjusted for the decreased renal function (e.g. heparin). A large number of medicinal plants, natural products and dietary components have been evaluated as potential nephroprotective agents. This article presents a review on some reported antidiabetic medicinal plants. Medicinal plants may serve as a vital source of potentially useful new compounds for the development of effective therapy to combat a variety of kidney problems. Many herbs have been proven to be effectual as nephroprotective agents while many more are claimed to be nephroprotective but there is lack of any such scientific evidence to support such claims. Developing a satisfactory herbal therapy to treat severe renal disorders requires systematic investigation of properties like acute renal failure, nephritic syndrome and chronic interstitial nephritis. Herbal medicines possess curative properties due to the presence of their chemical components. The present review is aimed to elucidate the list of nephroprotective medicinal plants, which are scientifically proved in treating renal disorders.

KEYWORDS: Nephrotoxicity, Medicinal Plants, Kidneys, Nephroprotective Plants, Renal Disorders.

INTRODUCTION

About 80 % of the world population depends on traditional medicine for their primary health care needs. Exploration of traditional medicine is a mysteriously interesting yet, scientifically significant and economically important task of ethnobotanists. Nephrotoxicity is one of the most common kidney problems and occurs when body is exposed to a drug or toxin. A number of therapeutic agents can adversely affect the kidney resulting in acute renal failure, chronic interstitial nephritis and nephritic syndrome because there is an increasing number of potent therapeutic drugs like aminoglycoside antibiotics, NSAID's, chemother apeutic agents have been added to the therapeutic arsenal in recent years (Hoitsma et al., 1991).

^{*}Department of Pharmacy, GRD (PG) Institute of Management & Technology, Dehradun, 248009, (Uttarakhand), India. *Correspondence E-mail Id:* editor@eurekajournals.com

Exposure to chemical reagents like ethylene glycol, carbon tetrachloride, sodium oxalate and heavy metals such as lead, mercury, cadmium and arsenic also induces nephrotoxicity. Prompt recognition of the disease and cessation of responsible drugs are usually the only necessary therapy (Paller. 1990). Nephroprotective agents are the substances which possess protective activity against Nephrotoxicity. Medicinal plants have curative properties due to the presence of various complex chemical substances. Early literatures have prescribed various herbs for the cure of renal disorders (http:// farmacists.blogspot.com). Co-use of various medicinal plants possessing nephroprotective activity along with different nephrotoxic agents which may attenuate its toxicity.

The term renal failure primarily denotes failure of the excretory function of kidney, leading to retention of nitrogenous waste products of metabolism in the blood (Gourley. 2000). In addition to this, there is a failure of regulation of fluid and electrolyte balance along with endocrine dysfunction. The renal failure is fundamentally categorized into acute and chronic renal failure (Barry et al., 2000).

Nephrotoxicity is one of the most common kidney problems and occurs when body is exposed to a drug or toxin. When kidney damage occurs, body unable to rid of excess urine and wastes from the body and blood electrolytes (such as potassium and magnesium) will all become elevated. A number of therapeutic agents can adversely affect the kidney resulting in acute renal failure, chronic intestinal nephritis and nephritic syndrome because increasing number of potent therapeutic drugs like aminoglycoside antibiotics, chemotherapeutic agents and NSAIDs have been added to the therapeutic arsenal in recent years. Exposure to chemical reagents like ethylene glycol, carbon tetra

chloride, sodium oxalate and heavy metals like lead, mercury, arsenic and cadmium also induces nephrotoxicity (Pydi. 2011; Bharti et al., 2012; Yogesh et al., 2011; Vadivukkarasi and Sudha. 2011; Murthy et al., 2011). Many plants have been used for the treatment of kidney failure in traditional system of medicine throughout the world. Indeed along with the dietary measures, plant preparation formed the basis of the treatment of the disease until the introduction of allopathic medicine.Traditional knowledge will serve as a powerful search engine and most importantly, will greatly facilitate intentional, focused and safe natural products research to rediscover the drug discovery process. Therefore, search of nephroprotective herbs from medicinal plants has become important and need of the day.

Therefore article shows a review on some reported antidiabetic medicinal plants (with their botanical name, Family and part used) (Shelkea et al., 2011; Shanmukha et al., 2010; Chand et al., 2009; Sarumathy et al., 2011; Priyadarsini et al., 2012; Hajiz et al., 2012; Zoobi and Ali. 2012; Sahoo et al., 2012; Kalaiselvan et al., 2010; Cordeiro and Kaliwal. 2011; Mehul et al., 2012; Swathi et al., 2011; Nitin et al., 2012; Dheeraj et al., 2010; Kannappan et al., 2010; Geo and Baskaran. 2011; Palani et al., 2010; Chanchal et al., 2006; Narendra and Ameeta. 2012; Sudhavani et al., 2010; Okwosa et al., 2009; Pratibha et al., 2009; Guanghua et al., 2012; Jain and Singhai. 2010; Gutierrez et al., 2010; Qazi Zaid et al., 2012; Hussian et al., 2012; Saumya et al., 2011).

Acute renal failure (ARF) refers to the sudden and usually reversible loss of renal function which develops over a period of days or weeks. There are many causes for acute renal failure which mainly includes acute tubular necrosis that commonly accounts for 85% of incidence. Mostly acute tubular necrosis occurs either due to ischemia or toxins. The toxins may be exogenous or endogenous. The exogenous agents are radio contrast agents, cyclosporine, antibiotics, chemotherapeutic agents, organic acetaminophen solvents, and illegal abortifacients (Barry et al., 2000). Chronic renal failure (CRF) is an irreversible deterioration in the renal function which classically develops over a period of years, leading to loss of excretory metabolic and endocrine functions. Various causes of renal failure has been recognized like hypertension, diabetes mellitus, antineoplastic agents like cyclophosphamide, vincristin and cisplatin etc (Gourley. 2000).

AGENTS WHICH CAUSES NEPHROTOXICITY

Drugs, diagnostic agents & chemical are well known to be nephrotoxic. The following are some of the important nephrotoxic agents (Schrier and Gottschalk. 1993).

- a) Heavy metal: Mercury, arsenic, lead, bismuth
- b) Antineoplastic agents
 - Alkylating agents: Cisplatin, cyclophosphamide
 - Nitrosoureas: Streptozotocin, Carmustine, Lomustine & Semustine
 - Antimetabolites: High dose Methotrexate, Cytosine Arabinose, high dose 6-thioguanine, 5-flurouracil
 - Antitumor antibiotics: Mitomycin, Mithramycin, Doxorubicin
 - **Biologic agents:** Recombinant leukocyte and interferon
- c) Antimicrobial agents: Tetracycline, Acyclovir, Pentamidine, Sulphadiazine, Trimethoprin, Rifampicin, Amphotericin B
- d) Aminoglycosides: Gentamycin, Amikacin, Kanamycin, Streptomycin
- e) Miscellaneous
 - Radiocontrast agents: Non-steroidal anti-inflammatory agents (NSAID's): Ibuprofen, Indomethacin, Aspirin etc.

NEPHROPATHIES CAUSED DUE TO DIFFERENT TOXIC MECHANISMS

CISPLATIN TOXICITY

Cisplatin is a potent antitumor drug, but its clinical use is limited due to renal toxicity. Cisplatin decreases antioxidants and anti leading to oxidant enzymes enhanced generation of reactive oxygen metabolites and lipid peroxidation (Sadzuka et al., 1992). It is reported that many Indian medicinal plants show beneficial effects against renal injury (Ali and AlMoundhri. 2006). An early report indicated that nephrotoxicity might occur in as many as 50 to 75% of patients receiving this drug, and is dose limiting. It is used intensively in man, being effective in ovarian & bladder carcinoma, neuroblastoma, head and neck carcinoma, and lymphoma as well as thyroid endometrial neoplasm. However, the most significant activity is observed in testicular cancer. The clinical use of cisplatin is often complicated by nephrotoxicity, ototoxicity, gastrointestinal disturbances like nausea, vomiting and myelosuppression. Early clinical trials of cisplatin in cancer patients showed a striking incidence of persistent azotaemia and acute renal failure. Experimental studies have shown that there is an abrupt fall in the effective renal plasma flow within 3 hrs of the i.p. dose of cisplatin. It is known to be filtered by the glomeruli and concentrated in the glomerular filtrate from which it is activated in the presence of a low intra cellular chloride concentration. The low intracellular concentration of chloride facilitates the displacement of chloride by the water molecule yielding a positively charged, hydrated and hydroxylated complex. Hydration of cisplatin induces formation of monochloro monoaquodiamino platin or diaquo diammineplatin. These agents alkylate the purine and pyrimidine bases of nuclear material. Renal damage is seen in proximal

tubular S3 portion, the distal tubule and collecting duct. Other proposed explanation of the nephrotoxicity of cisplatin include the possibility that it include generate reactive metabolites that bind covalently to tissue macromolecules. The nephrotoxic effects might also be due to sulphydryl binding of heavy metal. A reduction in sulphydryl groups in the rat renal cortex has been demonstrated; this occurred before any significant change in renal function could be detected, suggesting that this biochemical change may be a primary event. Cell fractionations have shown that the greatest decline of sulphydryl groups occurs in the mitochondrial & cytosol fractions; these also had the highest concentrations of platinum. A study found that cisplatin induced proximal tubule injury could be ameliorated by the administration of hydroxyl radical scavengers. In these studies cisplatin (5mg/kg BW) caused peroxidation. The hydroxyl radical lipid scavenger prevented acute renal failure by altering tubule damage & enhancing the regenerative response of damaged tubule cells protection from cisplatin toxicity has generally focused on providing free radical scavengers.

ACETAMINOPHEN TOXICITY

Acetaminophen is also known as paracetamol (Yapar et al., 2007). It is a widely used analgesic and antipyretic drug that is safely employed for a wider range of treatments (Nelson. 1995). Overdose of acetaminophen in humans is fairly common and is often associated with hepatic (Boelsterli. 1993; Holtzman. 1995) and renal damage (Trumper et al., 1998; Ghosh and Sil. Although 2007; Gulnaz et al., 2010). nephrotoxicity is less common than hepatotoxicity in acetaminophen overdose, renal tubular damage and acute renal failure can occur even in the absence of liver injury (Jones and Vale. 1993; Eguia and Materson. 1977) and can even lead to death in humans and experimental animals (Ray et al., 1996;

Webster et al., 1996). Studies are going on throughout the world in search of protective molecules that would provide maximum protection to the liver, kidney as well as other organs and practically very little or no side effects would be exerted during their function in the body (Montilla et al., 2005; Mansour et al., 2006). A number of herbs are traditionally used in different countries during in response to drug or toxin induced hepatic and renal disorders (El-Beshbishy. 2005). There are three pathways for acetaminophen metabolism which includes conjugation with sulfate, glucoronide and metabolism by cytochrome p450 oxidase enzyme system (Slitt et al., 2005; Gamel el-din et al., 2003). 90% of ingested dose is metabolized through glucoronidation and sulfation pathway and 5% through cytochrome p450 oxidase enzyme system32-34. Metabolism by cytochrome p450 enzyme system produces a metabolite, N-acetyl-p-benzoquinone imine (NAPQI) which is toxic to liver and kidney. In therapeutic dose, this is rendered ineffective by reduced glutathione, an antioxidant compound in the liver and NAPQI-reduced glutathione is excreted by kidney. In acetaminophen glucoronidation overdose, sulfation and pathways become saturated. The amount and rate of formation of NAPQI is greatly increased, depleting body's reduced glutathione stores and outstripping its capability to make new glutathione. NAPQI then binds covalently with cells causing their death, resulting in liver and kidney dysfunction. Indeed several biological compounds with antioxidant properties proved effective in protecting the kidneys against deleterious effects of acetaminophen overdose (Presscott. 2005; Mugford and Tarloff. 1997; Melo et al., 2006; Liebert et al., 2005).

GENTAMICIN TOXICITY

Aminoglycoside antibiotics have been widely used for gram-negative bacterial infections. However, their nephrotoxicity and ototoxicity are the major limitations in clinical use. Among several aminoglycoside antibiotics, the grade of nephrotoxicity has been reported to be in the following order as, neomycin > gentamicin > tobramycin (Hu et al., 1996). Gentamycin Nephrotoxicity occurs in about 15-30% of treated subjects, is manifested clinically as nonoliguric renal failure, with a slow rise in serum creatinine and hypoosmolar urinary output developing after several days of treatment (Abdel-Zaher et al., 2008). Gentamicin is filtered through glomeruli into tubular urine that binds with anionic phospholipids, such ลร phosphatidylinositol or phospholipdylserine, in brush border membrane of proximal tubular cells reabsorbed actively via pinocytosis process into tubular cells, taken up by lysosomes and thereafter produces phospholipidosis (Hu et al., 1996). The drug enters into the cells by adsorptive/receptor mediated endocytosis after binding to acidic phospholipids and megalin and is found essentially in lysosomes. Animals treated with low, therapeutically relevant doses of aminoglycosides show both lysosomal phospholipidosis and apoptosis in proximal tubular cells (Suzuki et al., 1995). The following are some of the medicinal plants for review which possess nephroprotective activity.

Demand for medicinal plants is increasing in both developing and developed countries. Research on medicinal plants is one of the leading areas of research globally. However, there is a need to pay closer attention to the issue of bioactivity-safety evaluation and conservation of medicinal plants. Kidney failure is one of the most common diseases in India. The world health organization recognizes four major groups of renal failure according to the predominant involvement of corresponding Glomeruler component. morphologic i) diseases, ii) Tubular diseases, iii) Interstitial diseases and iv) Vascular diseases. Also two major stages viz. a) Acute renal failure-is a syndrome characterized by rapid onset of renal dysfunction, chiefly oliguria or anuria, and sudden increase in metabolic waste-product in the blood and secondly b) Chronic renal failureis a syndrome characterized by progressive and irreversible deterioration of renal function due to slow destruction of renal parenchyma eventually terminating in death. Many plants have been used for the treatment of kidney failure in traditional system of medicine throughout the world. Indeed along with dietary measures, plant preparation formed the basis of the treatment of the disease until the allopathic introduction of medicine. Ethnomedicinal plants can be used to help forestall the need for dialysis by treating the causes and effect of renal failure, as well as reducing the many adverse effect of dialysis (Yarnell et al, 2007) though; there are few chemical agents to treat acute renal failure. Studies reveal that synthetic nephroprotective agents have adverse effect besides reduce nephrotoxicity, Various environmental toxicant and clinically useful drugs, acetaminophen and gentamicin, can cause severe organ toxicities through the metabolic activation to highly reactive free radical (Adeneye et al, 2008) Right from its beginning, the documentation of traditional knowledge, especially medicinal uses of plants, has provided many important drugs of modern day. The herbalist / local vaidyas still practice herbal medicines. Several herbal drugs act as good non-specific cytoprotective. In view of this background, it is thought worthwhile to evaluate the indigenous plants which could be useful as adjuvant as nephroprotective. This helps to decrease the potential nephrotoxicity of drugs like gentamicin, cisplatin, cyclosporine, Carbon tetrachloride etc. (Qarawi et al, 2008; Khan et al, 2009). Further it was conceptualized that such native plants would be useful, at least as adjuvant in the treatment of different kind of degenerative disease of kidney (Meena et al, 2009). Such type of observations also recorded in own laboratory using herbal formulation. The

knowledge of these medicines is age old. The use of herbs is the cheapest way for cure of various health disorders. (Bhattacharjee, 1998; Kirtikar and Basu, 1995; Khare, 2007). This review attempts to portray the discovery and development of medicine from galenical to genomical, with a focus on the potential and role of medicinal plants. Ayurveda is a traditional Indian medicinal system being practiced for thousands of years (Chopra et al, 1994) Ethnobotanical studies are often significant in revealing locally important plant species especially for the discovery of crude drug (Jain et al, 1991). Considerable research on pharmacognosy, chemistry, pharmacology and clinical therapeutics has been carried out on native medicinal plans. Traditional knowledge driven drug development can follow a reverse pharmacology path and reduce time and cost of development. In Indian system of medicin several herbal remedies has been tried for the treatment of Kidney failure since the time of Charka and Sushruta. New approaches to improve and accelerate the joint drug discovery and development process are expected to take place mainly from innovation in drug target elucidation and lead structure

discovery. (Pushpagandan and Kumar, 2005) Traditional knowledge will serve as a powerful search engine and most importantly, will greatly facilitate intentional, focused and safe natural products research to rediscover the drug discovery process. Therefore, search of nephroprotective herbs from medicinal plants has become important and need of the day (Patil, 2003). Periodical surveys were made for search of new traditional herbal medicines in village of khandesh region local traditional healers having practical knowledge of plant in medicine were interviewed in Nundurbar, Dhule and Jalgaon district. These district are inhabited by Bhills, Garits, kokanis, mavschis, valvis, pawras, tribs. Regular visits were planned during the period of 2007-2009. The information was collected from local traditional healers and abroginal people of these districts through intensive interviews according to method suggested by (Chopda and Mahajan et al, 2009) The gathered data was verified by Ethenomedicinal plants uses as nephroprotective care in khandesh region of Maharashtra. (Gupta et al, 2004 and Tayade and Patil, 2006).

Bota	inical Name	Family	Part used	Chemical constituents	Screening method	References
1	Aerva lanata	Rutaceae	Whole plant	Botulin,β-sitosterol, Amyrin, Hentriacontane, Campesterol, Stigma sterol, Kaempferol, Propionic acid, β- carboline-I, Aervoside and Aervolanine.	Gentamycin induced	Paller et.al, 1990
2	Crataeva nurvula	capparidaceae	Fruit	Kaemferol-3-O-a-D- glucoside, Quercitin- 3-O-a-D-glucoside, Flavanoids, Glucosinolates, Steroids, Lupeol and Tannins.	Gentamycin induced	Kore et.al, 2011

Table 1a.List of Nephroprotective plants

3	Orthosiphon stamineus	Laminaceae	Whole plant	Flavanoids, Phenols, Carbohydrates, Steroids, Tannins, Glycosides, Terpins and Saponins	Gentamycin induced	Kannapan et.al,20104 1
4	Strychnos potatorum	Loganiaceae	Seed	Flavanoids, Phenols, Saponins, Alkaloids, Steroids, Tannins, Glycosides, and Lignins.	Gentamycin induced	Ruby Varghese et.al, 2011
5	Aerva javanica	Amaranthaceae	Fresh roots	Isoquercetin, 5 methylmellein, 2- hydroxy -3-O-β- primeveroside naphthalene-1,4- dione, Apigenin7- Oglucoronide and Kaempferol	Cisplatin induced	Vinit movaliya et.al, 2011
6.	Carica papaya	Caricaceae	Seed	Flavanoids, Phenols, Alkaloids, Protein, Sterols, Terpenoids, Carbohydrates, Steroids, Tannins, Glycosides, Terpins and Saponins.	Cisplatin induced	Subal debnath et.al, 2010
7.	Ficus religiosa L	Moraceae	Latex	Flavonoids, Amino acids and Tannins.	Cisplatin induced	Yogesh chand yadav et.al, 2011
8.	Pedalium murex Linn	Pedaliaceae	Dried fruits	Flavanoids, Flavones, Alkaloids, Triterpenoids, Carbohydrates, Glycosides and Saponins.	Cisplatin induced	Shelke et.al, 2009
9.	Vernonia cinerea	Compositae	Aerial parts	Triterpenoids like α - amyrin, β -amyrin and lupeol.	Cisplatin induced	Sreedevi et.al, 2011
10.	Acorus calamus	Araceae	Aerial parts	Monoterpene, Sesquiterpene, Phenyl propanoid, Flavonoids, Quinone and basarone.	Acetaminop hen induced	Palani et.al, 2010
11.	Boerhaavia diffusa	Nyctaginaceae	Root	Flavonoids, Alkaloids, Steroids, Triterpenoids, Lipids, Lignins, carbohydrates, Proteins and Glycoproteins.	Acetaminop hen induced	Surendra et.al, 2011
12.	Indigofera	Fabaceae	Whole	Flavonoids, Phenolic	Acetaminop	Palani et.al,

	barberi L		plant	acid and sterols.	hen induced	2008
13.	Pimpinella tirupatiensis	Apiaceae	Whole plant	Alkaloids, Flavonoids, Flavones, Volatile oils, β-Bisaboline, Δ- 3-Carene, Cis- Carveol, Enemol, Δ- Carveol and Methylgeranate.	Acetaminop hen induced	Palani et.al, 2009
14.	Curcuma longa	Zingeberaceae	Rhizom e	Curcumin, Turmeric oil, Terpenoids, Curcumin (Terpene), Starch and Albumnoids.	Cadmium induced	Eduardo Molina- Jijon et.al, 2011
15.	Drynaria fortune	Polypodiaceae	Whole plant	Arsenic, Ca2+, Cu2+, Glucose, Iron, Mg, Mn, Hg, Naringin, K+, Na+, Starch and Zinc.	Silver chloride induced	Kore et.al, 2011
16.	Eruca sativa	Crassulaceae	Seeds	Flavanoids	Mercuric chloride induced	Sarwar Alam et.al, 2007
17.	Moringa oleifera	Moringaceae	Seeds	Vitamin A, Nicotinic acid, Ascorbic acid, Vitamin B, Fatty acid, Glucose, Sucrose, Citric acid, Malic acid, Succinic acid, Fumaric acid and Oxalic acid.	Fluoride induced	Ranjan et.al, 2009
18.	Tamarindus indica	Caesalpinaceae	Fruit pulp	Polysaccharides, Balsamine, Catechin, Nasturtium, Tamarin, Phosphatidic acid, Phosphatidic choline, Ethanollamine, Serine, Inositol, Alkaloid, Citric acid, Tartaric acid and Pottasiumbitartrate.	Fluoride induced	Ranjan et.al, 2009
19.	Tectona grandis	Verbanaceae	Bark	Lapachol, Dehydro- α-lapachone, Methyl quinizarin and Squalene.	Alloxan induced	Ghasias et. al, 2010
20.	Ginkgo biloba	Ginkgoaceae	Whole plant	Flavonoids, Bilobalide, GingkolideA, Gingkolide B and	Streptozoto cin induced	Welta et.al, 2007

				Gingkolide C and Biflanoide.		
21.	Abutilon	Malvaceae	Whole	Saponins,	Gentamicin	Khore et.al,
	indicum		plant	Flavonoids and	induced	2011
				Tannins.		
	Euphorbia	Euphorbiaceae	Leaves	Saponins,	N-nitroso	Pracheta
22.	neriifolia			Flavonoids and	dimethyl	et.al, 2011
				Tannins	amine	
					induced	
23.	Rubia	Rubiaceae	Root	Purpurin, Manjistin,	Ethylene	Divakar et.
	cardifolia Linn			Garancin,Purpuroxa	glycol	al, 2010
				nthin, Resin,	induced	
				Glucose, Sucrose,		
				Triterpenes,		
				Lucidine,		
				Anthroquinine,		
				Fatty acids and		
				Gum.		
24.	Punicagranat	Puniaceae	Fruit	Ellagic acid,	Ferric nitrilo	Ahmed et
	um L		peel	Ellagitannins and	tri acetate	al, 2010
				gallic acid.	induced	

Table 1b.Some Indigenous plants to used against Kidney disorders

S. No.	Name of plants	Family	V. Name	Main Active Principle
1.	Abelmoschus	Malvaceae	Bhendi	Carotene, folic acid, thiamine
	esculentus L			riboflavin, tocopherol palmitic acid
2.	Abrus precatorius L	Leguminosae	Gunja	Glucoside,Alkaloid,
3.	Abutilon indicum L	Malvaceae	Atibalaa	Asparagines, Mucilage, Tannin,
				alkaloids
4.	Acacia arabica(Willd)	Leguminosae	Babul	Tannin,Flavonoid
5.	Acacia catechu L	Mimosaceae	Khair	Flavonoid,,Tannin
6.	Acacia sinuate(Lour)Merrill	Mimosaceae	Cikakai	Saponin, Flavonoid, Tannin
7.	Achilla millefolium L	Compositae	Gandana	Alkaloid, Essential oil
8.	Achyranthes aspera L.	Amaranthaceae	Aghada	Alkaloids, saponin, Tannin Oil
9.	Adiantum Lunulatum Burm	Polypodiaceae	Hansraj	Flavonoids,terpenoids,Tannin,Volat ile oil
10.	Aerva lanata L Juss	Amaranthaceae	Kupuri madhuri	Amyrin, campensterol, β- sitosterols, flavonoides, glycoside
11.	Alangium salvifolium Wang	Alanglaceae	Ankol	Alkaloids, Akoline Lamarkine,
12.	Allium cepa L.	Liliaceae	Onian	Essential oil orgnic sulphide Flavonoid, phenolic acid
13.	Amaranthus spinosus L.	Amaranthaceae	Kateli- chaulai	Alkanes, Quinoline, sterols
14.	Anogeissus latifolia(Roxb)	Combretaceae	Dhavara	Tannins,calcium,gum,Qurecetin
15.	Anona Squamosa L	Annonaceae	Custard apple	Alkaloid Aminoacids, camphor, anonaine

16.	Apium graveolens L.	Umbelliferae	Ajmoda	Volatile oil, Flavonoids, Alkaloid
17.	Arachis hypogaea L	Fabaceae	Mung-phali	Vit e, Flavonoid, Tannins
18.	Arctium lappa L.	Compositae	Great	Flavonoid Hexa-saccharide, tannin
	, ,		Burdock	volatile oil
19.	Asclepias syriaca L.	Asclepiadaceae	Mohari	Glucol, asclepiadin
20.	Asparagus	Liliaceae	Shatavari	Oil, saponin
	racemosus Willd			
21.	Atropa belladona L.	Solanaceae	Belladona	Alkaloid, Tanin, starch,
22.	Azadirachta indica L	Meliaceae	Nimb	Alkaloid, steroid, a.acid Azardin,
				Resin, tannine, fixed oils
23.	Bacopa monnieri L	Scrophulariaceae	Brahmmi, .	Essential oil, Alkaloid
24.	Balanites roxburghii L	Balanitaceae	Hingol	Steroidal Saponin, Amino acid
25.	Baliospermum	Euphorbiaceae	Danti	Phorbol esters, Terpenoid,
	<i>montanum</i> Willd			Flavonoids, hydrocarbon, sitoserol,
				D-glucoside
26.	Bambusa bamboo Von	Arundinacae	Bamboo	Cholin, betain, Nuclease, Urease,
27.	Bambusa nutans L	Arundinacea	Bamboo	Cholin, betain, Nuclease, Urease,
28.	Barleria prionitis	Aceanthaceae	Kate-Koranti	Essential oil, Flavonoid Glycoside, β-
	Linn.			sitosterol
29.	Basella alba L	Basellaceae	Indian	Iodine, fiuorine, carotenoids Flavonoi
			spinach	d
30.	Benincasa hispida	Cucurbitaceae	White gourd	Glucoge,mannitolβ-
	(Thunb)Cogn			sitosterol, protene
31.	Boerhavia diffusa L.	Nyctaginaceae	Punarnava	Flavonoid, Alkaloids, triacontanol, he
				ntriacontane,β.sitosterol
32.	Boswellia serrata	Burseraceae	Dhupali,	Tanins, pentosans, lignin, holocellulo
	roxb		Salai	se,β-sitosterol
33.	Brassica oleracea L	Brasscaceae	Cabbage	Essentinl, aminoacid
34.	Butea monosperma	Fabaceae	Palash	GlucosideButine, proteolytic
	Lam			lipolytic enzyme,Flavonoid
35.	Cajanus cajan L millsp	Fabaceae	Tuvar	Amino acid,galactosid
36.	Carica papaya L.	Caricaceae	Рарауа	Alkaloid, papain enzymes.
37.	Cardiospermum halicacabum L.	Sapindaceae	Kanphuti	Alkaloid, β-sitostero.l
38.	Cassia absus L.	Caesalpiniaceae	Ran Kulith	Alkaloid, Sitosterol, Glucoside.
39.	Cassia fistula L.	Caesalpiniaceae	Bahava	glycoside,Tannin,Flavonoid.
40.	Chelidonium jajus L.	Papaveraceae	Celandine	Alkaloids, Flavonoids
41.	Cocos nucitera L	Arecaceae	Coconut	Saccharose sorbitol alcohol, ketones
42.	Commiphora mukul	Burseraceae	Guggal	Guggulsterone, Flavonoid.
	Engl			
43.	Cordia dichotoma Forst	Boraginaceae	Bhoker	Alkaloid,Tannin
44.	Curculigo orchioidesGaertn	Amaryllidaceae	Kalimusli	Saponine,curculigo,phenolicglycosi de
45.	Cynodon dactylon Pers	Gramineae	Durva	β-ionone,2-propionic4- hydroxybenzoic
46.	Cyperus rotundus L	Cyperaceae	Nagermotha	Essentialoil, cyperene, cyperol, starc

				h β-sitosterol
47.	Datura metal L	Solanaceae	Datura	Alkaloid, scopolamine, hyposcymine,
				atropin,vitC
48.	Daucus carota L	Umbelliferae	Carrot	Oil, carotol essential oil, Flavones
49.	Demostachya bipinnata L	Compositae	Kush	Alkaloid, Terpenoid
50.	Desmodium gangeticum L	Fabaceae	Salpan	Alkaloids
51.	Digitalis Purpurea L	Scrophulariaceae	Hrutpatri	Glycosides, flavonoids, saponin
52.	Dolichos biflorus L	Leguminosae	Kulith	Urease, lectin carbohydrate
53.	Elettaria cardamomum Maton.	Zingiberaceae	Chhoti Elaichi	Palmitic acid
54.	Ficus religiosa L	Moraceae	Piple	Arabinose,mannose,glucose β- sitosterol D-glucoside
55.	Foeniculum vulgareMill	Apiaceae	Saunf	Oil, Methyl Chavicol, Limonene Essential oil
56.	Gossypium arboretum L.	Malvaceae	Cotton	Betaine, choline, Salicylic acid.
57.	Gymnema sylvestrer(Retz)R.Br	Asclepiadaceae	Gudmar	Saponine,I-V,gymnemic acid
58.	Haldina cordifolia(Roxb)	Rubiaceae	Haldu	Oleoresin, essential oil, cellulose, βsitosterol
59.	Helianthus annus L.	Compositae	Sunflower	Albumin.globulin,glutelin, βsitosterol
60.	Hemidesmus indicus L.	Asclepiadaceae	Anant mule	Essential oil, Steroid, saponin, resine tannine
61.	Hibiscus sabdariffa L.	Malvaceae	China Rose	Organic acid anthocyanin vitamin C
62.	Holarrhena antidysentrica L.	Apocynaceae	Kala-Kuda	Alkaloids, tannin, Triterpene,
63.	Humulus lupulns L.	Cannabidaceae	Нор	Volatileoil, polyphenolic, Tannin Aspargin
64.	Hygrophila auriculata K.Schum.	Acanthaceae	Neermali	Fattyoil,alkaloid,calcium,phosphate , K, CL
65.	Jasmium grandiflorum L.	Oleaceae	Chameli	Alkaloid,Salicylicacid,essencial oil,Ascorbic acid Glucoside
66.	Lawsonia inermis L.	Lythraceae	Mehandi	2-hydroxy-1,4-naphthquinone Flavonoid, βsitosterol
67.	Leptadenia reticulataW.&A	Asclepiadaceae	Jivanti	Stigma sterol,tocopherol
68.	Linum usitatissimum L.	Linaceae	Aalsi	fixed oil protene wax,resin,sugar glycoside
69.	Mangiifera indica L.	Anacardiaceae	Mango Plant	Flavonoid Phenolic acidVitamin ABCD
70.	Menta arvensis L.	Labiatae	Podina	Essentialoil, carvones
71.	Mesua ferrea L.	Guttiferae	Nagkesarah	Palmitic, stearic, oleic linoleic
72.	Michelia champaca L.	Magnoliaceae	Champa	Essentialoil fatty oil
73.	Mimosa pudica L.	Leguminosae	Lajalu	Alkaloids, Mimosine

74.	Momordica dioica Roxb ex willd	Cucurbitaceae	Jangali karelaa	Glycoside, saponin
75.	Moringa oleifera	Moringaceae	Drumstick	Carotene, nicotic acid, ascorbic
-	Lam	0	tree	acid,amino acid
76.	Mucana pruriens L.	Leguminosae	Khajkuiri	,Calcium,phosphorus,iron,sulphur,a lkaloids
77.	Mucuna adans L	Leguminosae	Khaj-Kuiri	Calcium,glucoside alkaloids βsitosterol
78.	Murraya Koenigii L	Rutaceae	Karry patta	Oil,b-caryophyllene,b-gurjunene, b- Carbazol, Alkaloid
79.	Musa paradiciaea L	Scistaminaceae	Banana	Albumin, globulin, glutelin, proteoses
80.	Nelumbium nucifera gaertn	Nelumbonaceae	Lotus	Alkaloids, nuciferine, protene sugar, vitamin
81.	Nerium indicumMill	Apocynaceae	Kaner	Glycoside Digitoxigenin
82.	Nyctanthus arboterresris L	Oleaceae	Parijat	Oil,manitol,tannin, βsitosterol
83.	Ocimum basillicum L.	Labiatae	Sweet Basil	Essentialoil, methylcinnamate, euge nol, alkaloid, Flavonoid
84.	Ocimum canum L	Labiatae	Sathra	Essential oil,Eugenol, βsitosterol
85.	Ocimum Sanctum L	Labiatae	Tulasi	Eugenol, methol, ether, carvacol
86.	Orchis latifolia L	Orchidaceae	Salam	Volatile oil, loroglosin, Glucoside
87.	Orza sativa L	Gramineae	Chawal	Alkaloid,orilineprotene fat carbohydrate
88.	Ougeinia oojeinensis (Roxb) Hochr	Fabaceae	Dandan	Dimethoxy isoflavone homoferreiri
89.	Paederia foetida L	Rubiaceae	Hirenwel	Essential oil, Alkaloids, foetida
90.	Pandanus odoratissimus L	Pandanaceae	Ketek	Essential oil, Methylether Phenylethyl alcohol
91.	Pedalium murex L	Pedaliaceae	Bada gokhru	Alkaloid, fatty oil, resin
92.	Phaseolus mungo L	Leguminoseae	Green gram	2.8%ash,Oil
93.	Phyllanthus niruri L	Euphorbiaceae	Bhui awala	Alkaloid, Flavonoids, Phyllanthin, hypophyiianthin
94.	Phyllanthus urinaria	Euphorbiaceae	Valaitisaunf,	Alkaloid,Flavonoid-
	Ĺ		Muhuri	quercetin,astragalin,
95.	Phyllanthus reticulates Pair	Euphorbiaceae	Jarmala	Tannic acid
96.	Pimpinella anisum L.	Umbelliferae	Rajanigandh a	Volatile oil,flavonoid,Sterol
97.	Piper nigrum L	Pipereceae	Blak piper	Piperin, piredin alkaloid, chavicine essential,oil
98.	Saccharum officinarum L	Poaceae	Suger cane	Phenol,Glycolicacid
99.	Santalum album L.	Santalaeae	Safed Chandan	Santalbic acid,palmitic acid, olic acid
100.	Saraca indica L	Leguminosae	Ashok tree	Tannin, catechol,sterol,glycocide
101.	Securinega Ieucopyrus Muell- Arg	Euphorbiaceae	Hartto	Alkaloids, freetriterpens, steroids Tannin
102.	Solanum indicum L	Solanaceae	Dorli	Alkaloid, enzymes

	burn			alkaloid, solasodine, solasonine
104.	Solanumxantocarpu	Solanaceae	Kateringani	carpesterol, Glucoside, Alkaloid, sola
	m schrad &Wendell			nocarpine
105.	Solena amplexicaulis	Umbelliferae	Gomathi,	Alkaloid, Glycoside, Steroid
	Lam		Tawgaula	
106.	Sorgham vulagare L	Graminae	Jawar	Glucoside, Dhurin
107.	Sphaeranthus indicusL	Compositae	Gorkhmundi	Alkaloid, sphaeranthine, essential oil
108.	Tamarindus indica L	Caesalpiniacae	Imli	Tartaric acid, citricacid maleicacid
				flavonoid,glycosides
109.	Tectona grandis L	Verbenaceae	Teak	Calcium, phosphate, silica
				ammonium mg
110.	Tephrosia purpurpa L	Fabaceae	Sarphomka	Tephrosin, rotenone
111.	Terminalia chebula	Combrataceae	Hirda	Palmitic stearic oleic
	Retz			linoleic,Astrigent,tannic acid
112.	Tribulus terrestris L	Zygophyllaceae	Chota	Saponine, Diosgenine, gitogenine,
			Gokeru	flaonoids, Alkaloid.
			Khusha	
113.	Urtica dioica L	Urticaceae	Guelder	Flavonoids, amines steroids, phenols
			Rose	
114.	Vernonia	Asteraceae	Kalijira	Amino acid, linoleic myristic,
	antheimintica Willid			oleic,palmitic
115.	Vitis vinifera L	Vitaceae	Wine grape	Thiamine, niacin, biotin tocoferol
116.	Withania somnifora	Solanaceae	Ashwagand	Alkaloids, steroids, reducing suger,
	L dunal		ha	glycosides
117.	Zingiber	Scitaminaceae	Ginger	Essential oil, volatile oil
	officinale(Rose)			
118.	Zizyphus xylopyrus L	Rhamnaceae	Kath ber	Alkaloid,zizipine

Table 1c List of plants having nephroprotective activity (Talele, et al., 2012; Peesa. 2013; Lakshmi et al., 2012)

S.No.	Plant name	Family	Part used
1	Abelmoschus esculentus	Malvaceae	Fruits, seeds, root
2	Abrus precatorious	Leguminosea	Roots, leaves
3	Abutilon indicum	Malvaceae	Roots, bark
4	Acacia Arabica	Rubaceae	Leaves
5	Acacia catechu	Rubaceae	Bark
6	Acacia Sinuate	Rubaceae	Bark
7	Achilla millefolium	Compositae	Whole plant
8	Achyranthes aspera	Amaranthaceae	Root bark
	Amaranthaceae Root bark		
9	Acorus calamus	Araceae	Aerial parts
10	Adianthum lunulatum	Polypodiaceae	Leaves
11	Aegle marmelos	Rutaceae	Leaves
12	Aerva javanica	Amaranthaceae	Fresh roots
13	Aerva lanata	Amaranthaceae	Whole plant
14	Alangium salvifolium	Alanglaceae	Bulb
15	Allium cepa	Liliaceae	Bulb

16	Amaranthus spinosus	Amaranthaceae	Root
17	Andrographis paniculata	Acanthace	Root
18	Andropogon muricatus	Graminae	Leaves,flower
19	Annona squamosa	Annonaceae	Leaves, seeds
20	Anogeissus latifolia	Combretaceae	Bark, root
21	Anthoxanthum odoratum	Роасеае	Aerial parts
22	Apium graveolens	Umbelliferae	Root
23	Arachis hypogaea	Fabaceae	Seeds
24	Arctium lappa	Compositae	Root
25	Asclepias syriaca	Asclepiadaceae	Root
26	Asparagus racemosus	Meliaceae	Roots
27	Atropa belladona	Solanaceae	Root
28	Avuri kudineer	Fabaceae	Leaves
29	Azadirachta indica	Meliaceae	Leaves
30	Bacopa monnieri	Scrophulariaceae	Leaves
31	Balanites roxburg	Simarubiacea	Root, fruit
32	Baliospermum monatum	Euphorbiaceae	Root, leaves, seeds
33	Bambusa bamboo	Arundinacea	Leaves
34	Bambusa nutans	Arundinaceae	Leaves
35	Barleria prionotis	Acanthaceae	Flowers, leaves
36	Basella alba	Basellaceae	Leaves
37	Bauhinia variegata	Fabaceae	Stem
38	Benincasa	Cucurbitaceae	Fruit, seeds
39	Boerhaavia diffusa	Nyctaginaceae	Whole plant
40	Bombax ceiba	Bombacaceae	Fruits
41	Boswellia serrata	Frankincense	Gum
42	Brassica oleraccia	Brassicaceae	Leaves
43	Brassica oleraccia	Brassicaceae	Leaves
44	Bridelia retusa	Phyllanthaceae	Bark
45	Cajanus cajan	Fabaceae	Leaves, seeds
46	Canarium schweinfurthii	Poaceae	Stem bark
47	Cardiospermum helicacabum	Sapindaceae	Root, leaves
48	Carica papaya	Caricaceae	Fruits
49	Cassia absus	Leguminoseae	Seeds, leaves
50	Cassia auriculata	Fabaceae	Root
51	Cassia fistula	Leguminoseae	Leaves
52	Cayratia carnosa	Vitaceae	Leaves
53	Chelidonium jajus	Papaveraceae	Flowers
54	Clitoria ternatea	Papilionaceae	Aerial parts
55	Cocos nucifera L.	Arecaceae	Fruits, seeds, Leaves
56	Commiphora mukul	Burseraceae	Gum
57	Cordia dichotoma	Boraginaceae	Fruits
58	Crataeva nurvula	Capparidaceae	Fruit

59	Crataeva nurvula	Capparaceae	Stem bark
60	Cucurbita pepo	Cucurbitaceae	Seeds
61	Curculigo orchioides	Amartllidaceae	Roots
62	Curcuma longa	Zingeberaceae	Rhizome
63	Cynodon dactylon	Gramineae	Roots
64	Cyperus rotundus	Cyperaceae	Rhizome
65	Datura metal	Solanaceae	Leave, flower
66	Daucus carota	Apiaceae	leaves
67	Desmodium gangeticum	Fabaceae	Root
68	Dichrostachys cinera	Mimioseae	Root
69	Digitalis purpurea	Scrophulariaceae	Leaves
70	Dioscorea lanata	Dioscoreaceae	Whole plant
71	Diospyros lotus	Ebenaceae	Seeds
72	Dolichos biflorus	Leguminoseae Seeds	Seeds
73	Elephantophus scaber	Asteraceae	Leaves
74	Elettaria cardamomum	Zingiberaceae	Seeds
75	Emblica officinalis	Euphorbiaceae	Fruit
76	Ficus hispida	Moraceae	Fruits
77	Ficus religiosa	Moraceae	Latex
78	Foeniculum vulgare	Apiaceae	Seeds, flowers
79	Glycyrrhiza glabra	Fabaceae	Rhizome
80	Gossypium arboretum	Malvaceae	Leaves
81	Gymnema sylvestre	Asclepiadaceae	Leave, whole plant
82	Haldina cordifolia	Rubiaceae	Bark
83	Helianthus annus	Compositae	Seeds, Root, leaves
84	Hemidesmus indicus	Asclepiadaceae	Root, leaves, seeds
85	Hibiscus sabdariffa	Malvaceae	Leaves
86	Holarrhena antidysenterica	Apocynaceae	Bark, seeds
87	Humulus lupulns	Cannabidaceae	Fruits
88	Hygrophila auriculata	Acanthaceae	Roots, leaves
89	Indigofera aspalathoides	Fabaceae	Stems
90	Indigofera barberi	Fabaceae	Whole plant
91	Ipomoea digitata	Convolvulaceae	Root
92	Jasmium grandiflorum	Oleaceae	Leaves
93	Kalanchoepinnata pars	Crassulaceae	Leaves
94	Kigelia africana	Bignoniaceae	Matured fruits
95	Lanata camara	Verbenaceae	Roots
96	Lawsonia inermis	Lythraceae	Roots, leaves, seeds
97	Lepidium sativum	Brassicaceae	Seeds
98	Leptadenia reticulate	Asclepiadaceae	Root
99	Linum usitatissimum	Linaceae	Roots, Seed
100	Macrothelypteris oligophlebia	Thelypteridaceae	Rhizome
101	Mangifera indica	Anacardiaceae	Leaves

102	Mentha arvensis	Leaves	Leaves
103	Merremia emarginata	Convohrelaceae	Whole plant
104	Mesua ferrea	Guttiferae	Seed
105	Michelia champaca	Magnoliaceae	Leaves
106	Mimosa pudica	Leguminaceae	Leaves, root
107	, Momordica dioica	Meliaceae	Root
108	Monochoria vaginalis	Pontederiaceae	Aerial parts
109	Morinda citrifolia	Rubiaceae	Fruit
110	Moringa oleifera	Moringaceae	Flowers
111	Mucana prursiens	Leguminoseae	Seeds, Root
112	, Mucuna adana	Leguminoseae	Seeds, Root
113	Murraya koienigii	Rutaceae	Leaves, Root
114	Musa paradisiaca	Musaceae	Seeds
115	Nelumbium nucifera	Nelumbonaceae	Rhizome, seeds, flower, leaves
116	Nerium indicum	Apocynaceae	Root, leaves
117	Nigella sativa	Rannunculaceae	Whole plant
118	Nyctanthes arbortristis	Oleaceae	Leaves
119	Ocimum basilicum	Lamiaceae	Leaves
120	Ocimum canum	Lamiaceae	Leaves
121	Ocimum sanctum	Lamiaceae	Whole plant
122	Orchis latifolia	Orchidaceae	Whole plant
123	Orthosiphon stamineus	Laminaceae	Whole plant
124	Oryza saliva	Gramineae	Seeds
125	Ougeinia oojeinensis	Fabaceae	Bark
126	Paederia foetida	Rubiaceae	Root, leaves
127	Panax ginseng	Araliaceae	Root
128	Pandanus odoratissimus	Pandanaceae	Leaves
129	Pedalium murex	Pedaliaceae	Seeds, leaves
130	Phaseolus mungo	Leguminoseae	seeds
131	Phyllanthus niruri	Euphorbiaceae	Seeds
132	Phyllanthus reticulates	Euphorbiaceae	Leaves
133	Phyllanthus urinaria Linn.	Euphorbiaceae	Seeds
134	Picrohiza kurroa	Scrophulariaceae	Rhizome
135	Pimpinella anisum	Umbelliferae	Leaves
136	Piper cubeba	Piperaceae s	Seeds
137	Piper nigrum	Piperaceae	Seeds
138	Plectranthus amboinicus	Lamiaceae	Leaves
139	Prosthechea michuacana	Orchidaceae	Bulbs
140	Psidium guajava	Myrtaceae	Leaves
141	Rhazya stricta	Apocynaceae	Leaves
142	Saccharum officianarum	oaceae	Seeds, root
143	Salix caprea	Salicaceae	Flowers
144	Salviae radix	Lamiaceae	Whole plant

145	Santalum album	Santalaceae	Root
146	Saracca indica	Leguminosae	Leaves, seeds
147	Securinega leucopyrus	Euphorbiaceae	Leaves
148	Sida cordifolia	Malvaceae	Root
149	Solanum indicum	Solanaceae	Whole plant
150	Solanum nigrum	Solanaceae	Whole plant
151	Solanum surattense	Solanaceae	Fruit, Flower
152	Solanum xanthocarpum	Solanaceae	Root
153	Solena amplexicaulis	Umbellifera	Root
154	Sorgham vulagare	Graminae	Seeds
155	Spathodea campanulata	Bignoniaceae	Bark
156	Sphaeranthus indicus	Compositae	Leaves, flower
157	Strychnos potatorum	Loganiaceae	Seeds
158	Tamarindus indica	Caesalpinaceae	Leave, flower
159	Tectona grandis	Verbenaceae	Whole plant
160	Tephrosia purpurea	Zingiberaceae	Seeds
161	Terminalia chebula	Combretaceae	Seeds
162	Tribulus sativus	Zygophyllaceae	Fruit
163	Tribulus terrestris	Zygophyllaceae	Whole plant
164	Urtica dioica	Urticaceae	Roots
165	Vernonia antheimintica	Asteraceae	Fruits
166	Vernonia cinerea	Asteraceae	Aerial parts
167	Vigna mungo	Fabaceae	Seeds
168	Vitis vinifera	Vitaceae	Fruits
169	Withania somnifera	Solanaceae	Leaves
170	Zingiber officinale	Zinziberaceae	Rhizome
171	Zizyphus rugosa	Rhamnaceae	Leaves

Table 2.Indigenous plants used against burning micturation

Sr. No.	Name of Plant	Family	V. Name	Active principle
1	Andropogon	Graminae	Kalavala	Essential oil
	muricatus Retz.			
2	Boerhavia diffusa L.	Nyctaginaceae	Punarnava	Alkaloids, triacontanol, βsitost
				erol, glucose, fructose
3	Bombax ceiba L.	Bombacaceae	Salmali	Tannins, β–sitosterol, D-
				glucoside.
4	Clitoria terneata L.	Papilionaceae	Aparajita	Teraxeron,glucoside,oligosac
				charide
5	Cordia dichotoma	Boraginaceae	Bhoker	Tannin, Flavonoid, Saponin.
	Forst			
6	Desmodium	Leguminosae	Lapeta, chik	Alkaloid, Gangetin.
	gangeticum L			
7	Glyucerrhiza glabra L	Leguminosae	Bahava,	Volatileoil, esragole,
			Gambhari	anethole.

8	Gmeliana	Verbenaceae	Jivanti	Volatileoil, suger
	arborea(Roxb)			
9	Leptadenia	Asclepiadaceae	Gokarna, Bibli	Stigma sterol,tocopherol
	reticulataW.&A			
10	Mallotus	Euphorbiaceae	Kamla	Rottlerin, Isorottlerin,
	philippinensis(Muell)			resin,wax
11	Phllanthus neruri L	Euphorbiaceae	Bhuiamla	Phyllanthin, hypo Phyllanthin,
12	Raphanus sativus L	Crucifereae	Radish	Essentialoil, Glucoside, enzye
				me, methy elmercaptane
13	Rosa damascene(Mill)	Rosaceae	Rose	Essential oil
14	Rumex vesicularis L	Polygonaceae	Chukra	Glucoside, resine Tannine
15	Terminalia paniculata	Combretaceae	Sal dhaval	β-sitosterol, triterpene,
	(Aruna)			carboxylic acid glucoside,
				dimethyl ellagic acid

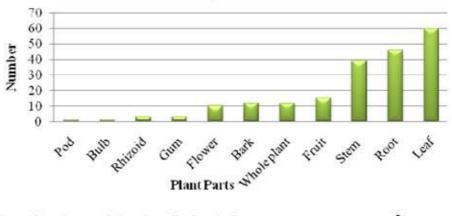
Table 3.Indigenous plants used to eradicate kidney stone formation

Sr. No	Name of Plant	Family	V. Name	Active principle
1	Aerva Lanata L.	Amaranthaceae	Kupruri	α -amyrin, campesterol, β -
				sitosterol & β-sitosteryl,
				palamitate, chrysin & four
				flavonoid glyacosides
2	Baliospermum	Euphorbiaceae	Danti	Phorobl esters, diterpene,
	Montanum			hydrocarbon, β-stiosterol, D-
	Willd.muell-Arg			glucoside
3	Bridelia retusa Sprang	Euphorbiaceae	Ftthar fode	Tannin,oil
4	Commiphora Mukul	Burseraceae	Gugal	Guggulsterone-E, Z,
	(Hookexstocks)			Guggulsteron I-VI cholesterol,
				seasamin camphorene,
				cambrane A-etc
5	Coriandrum Salivum L.	Umbelliferae	Dhaniya	Flavonoid, Glycoside, Fixed
				oil.
6	Crataeva Religoea	Capparidaceae	Varun	
	Buch, Ham			
7	Datura Metel L.	Solanaceae	White datura	Alkaloids, scopolamine,
				hyposcymine, Atropin, vita C
8	Dolichosbiflorus L.	Fabaceae	Kulith	Urease, lectin carbohydrate
				N-acetyl glucosamine, N-β.
				Glycosidically
9	Eclipta alba L.	Asteraceae	Bhrangarajah,	Thiophene, petroleum ether,
				tertheinyl aldehyde β-
				sitosterol
10	Murraya Koenigii L.	Rutaceae	Kurry patta	Oil, b-caryophyllene, b-
				gurjunene, b-elemene & b-
				phellandrene

	Table 4.Nephroprotective plants of Khandesh Region Sr. No. Nome of Plant Family No. Nome of Plant Family					
Sr. No.	Name of Plant	Family	V. Name	Active principle		
1.	Abutilon indicum L	Malvaceae	Atibalaa	Asparagines, Mucilage, Tannin, alkaloids		
2.	Acacia arabica(Willd)	Leguminosae	Babul	Tannin,Flavonoid		
3.	Achyranthes aspera L.	Amaranthaceae	Aghada	Alkaloids, saponin, Tannin Oil		
4.	Allium cepa L.	Liliaceae	Onian	Essential oil orgnic		
				sulphide Flavonoid, phenolic acid		
5.	Andropogon muricatus Retz.	Graminae	Kalavala	Essential oil		
6.	Anona Squamosa L	Annonaceae	Custard apple	AlkaloidAminoacids, camphor, a nonaine		
7.	Arachis hypogaea L	Fabaceae	Mung-phali	Vit e,Flavonoid,Tannins		
8.	Asclepias syriaca L.	Asclepiadaceae	Mohari	Glucol, asclepiadin		
9.	Asparagus racemosus Willd	Liliaceae	Shatavari	Oil, saponin		
10.	Azadirachta indica L	Meliaceae	Nimb	Alkaloid, steroid, Azardin, Resin, tannine, fixed oils		
11.	Bacopa monnieri L	Scrophulariaceae	Brahmmi	Essential oil, Alkaloid		
12.	Barleria prionitis Linn.	Aceanthaceae	Kate-Koranti	Essential oil,Flavonoid Glycoside, β-sitosterol		
13.	Basella alba L	Basellaceae	Indian spinach	lodine, fiuorine, carotenoids Flav onoid		
14.	Boerhavia diffusa L.	Nyctaginaceae	Punarnava	Alkaloids, triacontanol, βsitoster ol, glucose, fructose		
15.	Bombax ceiba L.	Bombacaceae	Salmali	Tannins,β–sitosterol,D- glucoside.		
16.	Brassica oleracea L	Brasscaceae	Cabbage	Essentinl, aminoacid		
17.	Butea monosperma Lam	Fabaceae	Palash	GlucosideButine, proteolytic lipolytic enzyme, Flavonoid		
18.	Cajanus cajan L Millsp	Fabaceae	Tuvar	Amino acid,galactosid		
19.	Carica papaya L.	Caricaceae	Рарауа	Alkaloid, papain enzymes.		
20.	Cassia absus L.	Caesalpiniaceae	Ran Kulith	Alkaloid, Sitosterol, Glucoside.		
21.	Cassia fistula L.	Caesalpiniaceae	Bahava	Glycoside, Tannin, Flavonoid.		
22.	Clitoria terneata L.	Papilionaceae	Aparajita	Teraxeron,glucoside,oligosacch aride		
23.	Commiphora mukul Engl	Burseraceae	Guggal	Guggulsterone,Flavonoid.		
24.	Cordia dichotoma Forst	Boraginaceae	Bhoker	Alkaloid, Tannin		
25.	Crataeva Religoea Buch,Ham	Capparidaceae	Varun	Linalool, linalyl acetate, thymol, β -caryphyllene α -pinene borneol, limonene, β -		

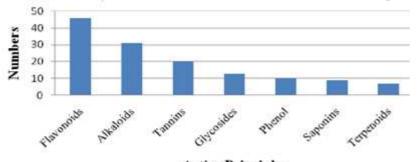
Table 4.Nephroprotective plants of Khandesh Region

				pheliandrene, citranellol
26.	Curculigo	Amaryllidaceae	Kalimusli	Saponine, curculigo, phenolicgly
	orchioidesGaertn			coside
27.	Cynodon dactylon Pers	Gramineae	Durva	β-ionone,2-propionic 4-
				hydroxybenzoic
28.	Cyperus rotundus L	Cyperaceae	Nagermotha	Essentialoil, cyperene, cyperol, st
				arch β-sitosterol
29.	Datura metal L	Solanaceae	Datura	Alkaloid, scopolamine, hyposcy
				mine,atropin,vitaC
30.	Daucus carota L	Umbelliferae	Carrot	Oil, carotol essential
				oil,Flavones
31.	Dolichos biflorus L	Leguminosae	Kulith	Urease, lectin carbohydrate
32.	Ficus religiosa L	Moraceae	Piple	Arabinose,mannose,glucose β-
				sitosterol D-glucoside
33.	Gmeliana	Verbenaceae	Jivanti	Volatileoil, suger
	arborea(Roxb)			
34.	Gossypium arboretum	Malvaceae	Cotton	Betaine, choline, Salicylic acid.
	<i>L</i> .			
35.	Gymnema	Asclepiadaceae	Gudmar	Saponine,I-V,gymnemic acid
	sylvestrer(Retz)R.Br			
36.	Helianthus annus L.	Compositae	Sunflower	Albumin.globulin,glutelin,
				βsitosterol
37.	Hemidesmus indicus L.	Asclepiadaceae	Anant mul	Essential
				oil, Steroid, saponin, resine
				tannine
38.	Hibiscus sabdariffa L.	Malvaceae	China Rose	Organic acid anthocyanin
				vitamin C
39.	Holarrhena	Apocynaceae	Kala-Kuda	Alkaloids, tannin, Triterpene,
	antidysentrica			
40.	Hygrophila auriculata	Acanthaceae	Neermali	Fattyoil, alkaloid, calcium, phosp
	K.Schum.			hate,K,CL
41.	Jasmium grandiflorum	Oleaceae	Chameli	Alkaloid, essencial oil, Ascorbic
	<i>L</i> .			acid Glucoside
42.	Leptadenia	Asclepiadaceae	Jivanti	Stigma sterol, to copherol
	reticulataW.&A			
43.	Leptadenia	Asclepiadaceae	Gokarna,	Stigma sterol, to copherol
	reticulataW.&A			
44.	Linum usitatissimum L.	Linaceae	Aalsi	fixed oil protene
				wax,resin,sugar glycoside
45.	Mangiifera indica L.	Anacardiaceae	Mango Plant	Flavonoid Phenolic acidVitamin
				ABCD
46.	Menta arvensis L.	Labiatae	Podina	Essentialoil, carvones
47.	Michelia champaca L.	Magnoliaceae	Champa	Essentialoil fatty oil
48.	Mimosa pudica L.	Leguminosae	Lajalu	Alkaloids, Mimosine


49.	Momordica dioica Roxb ex willd	Cucurbitaceae	Jangali karelaa	Glycoside, saponin
50.	Moringa oleifera Lam	Moringaceae	Drumstick tree	Carotene,nicotic acid,ascorbic acid,amino acid
51.	Mucana pruriens L.	Leguminosae	Khajkuiri	Calcium,phosphorus,iron,sulph ur,alkaloids
52.	Murraya Koenigii L	Rutaceae	Karry patta	Oil,b-caryophyllene,b- gurjunene,b-Carbazol,Alkaloid
53.	Musa paradiciaea L	Scistaminaceae	Banana	Albumin,globulin,glutelin,prote oses
54.	Nelumbium nucifera gaertn	Nelumbonaceae	Lotus	Alkaloids, nuciferine, protene sugar, vitamin
55.	Nerium indicumMill	Apocynaceae	Kaner	Glycoside Digitoxigenin
56.	Nyctanthus arboterresris L	Oleaceae	Parijat	Oil,manitol,tannin, βsitosterol
57.	Ocimum Sanctum L	Labiatae	Tulasi	Eugenol, methol, ether, carvacol
58.	Paederia foetida L	Rubiaceae	Hirenwel	Essential oil, Alkaloids, foetida
59.	Phaseolus mungo L	Leguminoseae	Green gram	2.8% ash, Oil
60.	Phllanthus neruri L	Euphorbiaceae	Bhuiamla	Phyllanthin, hypo Phyllanthin,
61.	Phyllanthus niruri L	Euphorbiaceae	Bhui awala	Alkaloid, Flavonoids, Phyllanthin, , hypophyiianthin
62.	Pimpinella anisum L.	Umbelliferae	Rajanigandha	Volatile oil,flavonoid,Sterol
63.	Raphanus sativus L	Crucifereae	Radish	Essentialoil, Glucoside, enzyeme , methy elmercaptane
64.	Rosa damascene(Mill)	Rosaceae	Rose	Essential oil
65.	Saccharum officinarum L	Poaceae	Suger cane	Phenol,Glycolicacid
66.	Santalum album L.	Santalaeae	Safed Chandan	Santalbic acid,palmitic acid, olic acid
67.	Solanum indicum L	Solanaceae	Dorli	Alkaloid, enzymes
68.	Solanum xantocarpum schrad&Wendell	Solanaceae	Kateringani	carpesterol, Glucoside, Alkaloid, solanocarpine
69.	Sorgham vulagare L	Graminae	Jawar	Glucoside, Dhurin
70.	Sphaeranthus indicusL	Compositae	Gorkhmundi	Alkaloid,sphaeranthine,essenti al oil
71.	Tamarindus indica L	Caesalpiniacae	Imli	Tartaric acid,citricacid maleicacid flavonoid, glycosides
72.	Tectona grandis L	Verbenaceae	Teak	Calcium,phosphate,silica ammonium mg
73.	Tephrosia purpurpa L	Fabaceae	Sarphonka	Tephrosin, rotenone
74.	Terminalia chebula Retz	Combrataceae	Hirda	Palmitic stearic oleic linoleic,Astrigent,tannic acid
75.	Terminalia paniculata	Combretaceae	Sal dhaval	β-sitosterol, triterpene,

	(Arjuna)			carboxylic acid glucoside,
				dimethyl ellagic acid
76.	Tribulus terrestris L	Zygophyllaceae	Chota Gokeru	Saponine, Diosgenine,
				gitogenine, flaonoids, Alkaloid.
77.	Vernonia	Asteraceae	Kalijira	Amino acid, linoleic myristic,
	antheimintica Willid			oleic,palmitic
78.	Withania somnifora L	Solanaceae	Ashwagandha	Alkaloids, steroids, reducing
	dunal			suger, glycosides

DISCUSSION


The people of India are well acquainted with a large number of indigenous medicinal plants than the natives of any other countries. Herbs are the principal form of medicine in India and they are becoming popular throughout the world. Thus, information generated from the present study deals about mostly medicinal plant as diuretic activity; some are medicinal plant used in burning urination and few medicinal plants against stone formation. The most dominant family is Euphorbiaceae. The leaves are most frequently used in the treatment of nephrotoxicity than rest of aerial plant. This review provides comprehensive account on nephroprotective indigenous plants (Ghaisas et al., 2010; Welta et al., 2007; Kore and Shete. 2011; Pracheta et al., 2011; Divakar et al., 2010; Ahmed and Eid Ali. 2010). It is aimed to record medicinal folk-lore for curing nephrotoxicity that exist in threatening stage. In India ayruevedic referred system of medicines several, herbal drugs and are prescribed for reducing renal damage and to avoid kidney related complication. These can be immense value in combating renal damage. Best endeavors of indigenous herbs to alternative medicine of renal damage. On going through various studies on treatment of kidney disorders, it seems that herbal plants play unique role as medicine. There is no synthetic

drug which relieves fully insufficiency of kidney. But indigenous plant possesses tissue rejuvenator property which is any way unavoidable. This may perhaps be the reason why in numerous cases, which synthetic medicines fails, indigenous system of medication succeed (Ali. 2003; Servais et al., 2008; Kannappan et al., 2010; Varghese et al., 2011; Movaliya et al., 2011; Debnath et al., 2010; Yadav et al., 2011; Shelke et al., 2009; Sreedevi et al., 2011; Palani et al., 2010; Surendra et al., 2011; Palani et al., 2008; Palani et al., 2009; Molina-Jijon et al., 2011; Kore et al., 2011; Alam et al., 2007; Ranjan et al., 2009; Madhukkal et al, 2009). He worked on fifteen medicinal plants, their active principle and more emphasized on renal physiology. The present investigation comprises 143 species of ethnomedicinally important plants of Maharashtra and 78 species from khandesh region out of which around 61 families used to cure kidney diseases (AI-Qarawi et al., 2008; Adeneye and Benebo. 2008; Bhattacharjee. 2004; Chopda and Mahajan. 2009; Chopra et al., 1999; Gupta et al., 2004; Jain. 1991; Khare. 2007; Kirtikar and Basu. 1995; Kshirsagar and Patil. 2008; Kshirsagar and Patil. 2008; Meena et al., 2009; Latheef et al., 2009; Khan et al., 2008; Prajapathi et al., 2003; Pushpagadan and Kumar. 2005; Taayade and Patil. 2006 ; Yarnell. 2007).

Distribution of Plant part Used in kidney Protection

Distribution of Active Principles Used in kidney Protection

Active Principles Figure 1.Summarizes relative part used and phytoconstitues of plants used in nephroprotection

Tribal people furnished valuable information regarding traditional uses of local plants like Dolichos biflorus, *Achyranthes* aspera, Andropogon muricatus. The native tribe of village namely Chinchpura and Boritanda told us and without any hesitation use of these plants as nephroprotective. The information generated from the present study according to table 1, 2 & 3. Euphorbiaceae-9.83% and leguminaceae-9.83% was the most commonly used family and rest of the data is as follows solanaceae-6.55%, labiateae-6.33%, ascle piadaceae - 4.91%. Phytochemical ranking of active principle is, flavonoid > alkaloid > tannin > glycosides > phenol > saponin > terpenoids. Among all the plant parts maximally leaves are used in nephroprotective plant. On the basis of information received from local tribes, we have formulated and developed herbal formulation to validate the claim of thesis. Data on nephroprotective plants is prepared as Achyranthes aspera, (leaves)Bauhinia racemosa

(stem bark) Tiphrozea purpura (root) Tectona grandis (seed) Tribulus terrestris (leaves) Andropogen muricatus (root) Dolichos biflorus, (seed) using a gentamicin induce nephrotoxicity model, this herbal formulation gave 75% protection in rat. Ethnomedicinally important plants used by traditional people needs to be evaluated for proper phytochemical analysis, level of toxicity. Extraction and isolation along few phytochemical with clinical trials examination of these plants may lead to development of potential bio-product in the treatment of disease and disorders of renal disease, this could help in creating mass awareness about conservation of such plants to promote ethno- medico-botany knowledge within the region, besides contributing to the preservation of such medicinally important species before they are extinct. Method reported gueries with different local herbalists in different seasons and comparison with the

plant species which are used in the treatment of renal damage is crucial and valuable.

CONCLUSION

It is clear that the medicinal plants play a prominent role against various diseases. A variety of medicinal plants and plants extracts have been reported for its significant nephroprotective activity in animal models. The nephroprotective activity is probably due to the presence of Flavanoids in all the few medicinal plants. The results of this study indicate that extracts of leaves and plants of some medicinal plants have good potentials for use in kidney damage. The present review study give evidential explore mechanism of action of medicinal plants against experimentally induced nephrotoxicity. Hence, the review of the study is concluded that the herbal drug possesses nephroprotective activity and it has been proven by different animal models which gives many links to develop the future trials. It is aimed to record medicinal folk-lore for curing nephrotoxicity that exists in threatening stage. In India ayurvedic referred system, several herbs are prescribed for reducing renal damage and to avoid kidney related complications. These can be immense value in combating renal damage. In this paper, we have attempted to use our best endeavors of indigenous herbs to alternative medicine of renal damage.

REFERENCES

- [1]. Abdel-Zaher AO, Abdel-Hady RA, Mahmoud MM, Farrag MMY. The potential protective role of alphalipoic acid against acetaminophen- induced hepatic and renal damage. *Toxicol*, 2008; 243: 261-270.
- [2]. Adeneye AA, Benebo AS. Protective effect of aqueous leaf and seed extract of *phyllanthus amarus* on gentamicin and acetaminophen-induced nephrotoxic

rats, J Ethnopharmacol, 2008; 118: 318-323.

- [3]. Ahmed MM, Eid Ali S.Protective effect of pomegranate peel ethanol extract against ferric nitrilotriacetate induced renal oxidative damage in rats. J Cell and Mol Biol, 2010; 7(2) & 8(1): 35-43.
- [4]. Al-Qarawi A.A, Abdel-Rahman H, Mousa H.M, Ali BH, El-Mougy SA. Nephroprotective action of *phoenix dactylifera* in gentamicine-Induced Nephrotoxicity. *Pharm Biol*, 2008; 46 (4): 227-230.
- [5]. Akbar Hajiz, Seyed Mohammad, Seyed Fazel, Rata Bigdellou, Sakineh M, Mohammad Ali. Antioxidant, antihemolytic and nephroprotective activity of aqueous extract of *Diospyros lotus* seeds. *Natural Drugs*. 69(4); 2012: 687-692.
- [6]. Alam MS, Kaur G, Jabbar Z, Javed K, Athar M. *Erucasati va* seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. *Food & Chem Toxicol*, 2007; 45:910–920.
- [7]. Ali BH. Agents ameliorating or augmenting experimental gentamicin nephrotoxicity: some recent research. *Food & Chem Toxicol*, 2003, 41, 1447– 1452.
- [8]. Ali BH. AlMoundhri MS. *Food Chem. Toxicol*, 2006; 44: 1173-1183.
- [9]. Barry M, Brenner, Floyd C, Rector. The kidney 6th Ed. Vol I, W.B. Saunders Company, Philadelphia; 2000; 3-67.
- [10]. Bharti D, Raghunath T, Manoj Kumar Z, Namrata V. Nephroprotective plants: A review. Inter J Pharm & Pharm Sci, 4(1); 2012: 8-16.
- [11]. Bhattacharjee S.K. Handbook of Medicinal Plants, Pointer Publishers, Jaipur, India. 2004.
- [12]. Boelsterli UA. Specific targets of covalent drug-protein interactions in hepatocytes and their toxicological significance in

drug-induced liver injury. *Drug Met. Res.* 1993, 25, 395-451.

- [13]. Chanchal K, Jagadish V, Mohammed Asad. Hepatoprotective activity of *Psidium guajava* L leaf extract. Indian J Exp Biol, 44; 2006: 305-311.
- [14]. Chopda MZ, Mahajan RT. Wound healing plants of Jalgaon District, Maharashatra state. India. 2009.
- [15]. Chopra R.N, Nayar S.L, Chopra I. C. Glossary of Indian medicinal plants, National Institute of Science communication (CSIR), New Delhi 1999.
- [16]. Cordeiro M, Kaliwal B. Hepatoprotective and nephroprotective activity of bark extract of *Bridelia retusa* in CCl treated female mice. *Inter J Mol Biol*, 2(1); 2011: 22-30.
- [17]. Debnath S, Babre N, Manjunath YS, Mallareddy, Parameshwar P, Hariprasath K.Nephroprotective evaluation of ethanolic extract of the seeds of papaya and pumpkin fruit in cisplatin-induced nephrotoxicity. J Pharm Sci & Technol, 2010; 2 (6):241-246.
- [18]. Dheeraj V, Srikar A, Subramanyam S, Raja. Evaluation of nephroprotective and antioxidant activity of Anthoxanthum odoratum on acetaminophen induced toxicity in rat. Inter J Pharm Res & Develop,. 2(9); 2010: 76-80.
- [19]. Divakar K, Pawar AT, Chandrasekhar SB, Dighe SB, Divakar G. Protective effect of the hydro-alcoholic extract of *Rubiacordifolia* roots against ethylene glycol induced urolithiasis in rats. Food & Chem Toxicol, 2010; 48: 1013–1018.
- [20]. El-Beshbishy HA. Hepatoprotective effect of green tea [*Camellia sinensis*] extract against tamoxifen-induced liver injury in rats. *J. Biochem. Mol. Biol.* 2005, 38, 300-306.
- [21]. Gamel el-din AM, Mostafa AM, Al-Shabanah O, Al- Bekairi AM, Nagi MN. Protective effect of Arabic gum against

acetaminophen induced hepatotoxicity in mice. *Pharmacol Res*, 2003; 48: 631-635.

- [22]. Geo A, Baskaran X. Nephroprotective activity of aqueous extract of *Solanum nigrum* in amphotericin B induced wister rats. *Inter J Appl Biores*, 1; 2011: 14-21.
- [23]. Ghaisas MM, Navghare VV, Takawale AR, Zope VS, Phanse MA, Antidiabetic and Nephroprotective effect of *Tectona* grandis L in alloxan induced diabetes. Arspharmaceutica, 2010; 51 (4):195-206.
- [24]. Ghosh A, Sil PC. Anti-oxidative effect of a protein from Cajanus indicus L. against acetaminophen-induced hepato-nephro toxicity. *Biochem Mol Biol*, 2007, 40,1039-49.
- [25]. Gourley H. Text book of therapeutic drug and disease management. 7th Edn. Charcil Livingstone, London; 2000; 425-36.
- [26]. Guanghua W, Yaling C, Han W, Anhua W, Chaomei X, Jintan R. Nephroprotective activity of *Macrothelypteris oligophlebia* rhizomes ethanolextract. *Pharm Biol*, 50(6); 2012: 773-777.
- [27]. Gupta AK, Sharma N. Tendon Reviews on Indian medicinal plants 1-4 ICMR, New Delhi. 2004.
- [28]. Gutierrez R, Gomez Y, Ramirez E. Nephroprotective activity of *Prosthechea michuacana* against cisplatin induced acute renal failure in rats. J Med Food, 13(4); 2010: 911-916.
- [29]. H.Gulnaz, M. Tahir, B. Munir, W. Swami. Protective effects of garlic oil on acetaminophen induced Nephrotoxicity in male albino rats. *Biomedica*, 2010, 26, 9-15.
- [30]. Hoitsma AJ, Wetzels JF, Koene RA. Drug induced nephrotoxicity. Aetiology, clinical features and management. *Drug Saf*, 1991; 6 (2): 131-147.
- [31]. Holtzman JL. The role of covalent binding to microsomal proteins in the

hepatotoxicity of acetaminophen. *Drug Metab. Rev,* 1995, 27, 277-97.

- [32]. http://farmacists.blogspot.com
- [33]. Hu J J, J.S.H. Yoo, M. Lin, E-J Wang, C.S Yang. Protective effects of diallyl disulfide on Acetaminophen induced toxicities. *Food Chem Toxicol*, 1996; 34: 963- 969.
- [34]. Hussian T, Gupta R, Sweety K, Eswaran B, Vijayakumar M, Rao C. Nephroprotective activity of Solanum xanthocarpum fruit extract against gentamycin induced nephrotoxicity and renal dysfunction in experimental rodents. Asian Pacific J Tropical Med, 5(9); 2012: 686-691.
- [35]. Jabbar Zoobi, Ali Mohd. An experimental evalution on nephroprotective activity of the flowers of *Salix caprea* (Saliceae). *Inter Res J Pharm*, 3(3); 2012: 139-142.
- [36]. Jain A, Singhai A. Nephroprotective activity of *Momordica diocia* Roxb. In cisplatin induced nephrotoxicity. *Nat Prod Res*, 24(9); 2010: 846-854.
- [37]. Jain, S.K. Dictionary of Indian Folkmedicine and Ethnobotany, 1991; 1-311.
- [38]. Jones AF, Vale JA. Paracetamol poisoning and the kidney. *J. Clin. Pharm. Ther*, 1993, 18, 5-8.
- [39]. Kalaiselvan A, Anand T, Soundarajan M. Reno productive activity of *Ipomoea digitata* in gentamycin induced kidney dysfunction. *J Ecobiotechnol*, 2(2); 2010: 57-62.
- [40]. Kannappan Madhukar A, Uma S, Mariymmal P. Evaluation of nephroprotective activity of Orthosiphon stamineus extract using rat model. Inter J Pharm Technol & Res, 2(1); 2010: 209.
- [41]. Kannappan N, Madhukar, Mariymmal, Sindhura PU, Mannavalan R.Evaluation of nephroprotective activity of Orthosiphon stamineus Benth extract using rat model. Inter J Pharm Tech Res, 2010; 2 (3):209-215.

- [42]. Khan MR, Rizvi W, Khan GN, Khan RA, Shaheen S. Carbon tetrachloride-induced nephro-toxicity in rats: Protective role of Digera muricata. J Ethnopharmacol, 2008; 122:91-99
- [43]. Khare C.P. Indian medicinal plants Springer Science Business Media LLC, 2007.
- [44]. Kirtikar KR, Basu B. D. Indian Medicinal Plants. 1995; (1): 5-6.
- [45]. Kore KJ, Shete RV, Jadhav PJ. Nephroprotective role of A. MARMELOS extract. Inter J Res Pharm & Chemi, 2011; 1(3): 617-623.
- [46]. Kore KJ, Shete RV. Effect of Abutilon indicum extract in gentamicin induced nephrotoxicity. *IJPRD*, 2011; 3(7): 73-79.
- [47]. Kshirsagar SR, Patil DA. Flora of Jalgaon District, Maharashtra. 2008.
- [48]. Latheef MA, Madhukkal HH, Ravindran S.A Review of Nephroprotective Plants. BPharm Project and review 2009; 1-27.
- [49]. Liebert JJ, Matlawska I, Bylka WM, M Marek. Protective effect of Aquilegia vulgaris (L) on APAP-induced oxidative stress in rats. J Ethanopharmacol, 2005; 97: 351-358.
- [50]. Mansour HH, Hafez HF, Fahmy NM. Silymarin modulates Cisplatin-induced oxidative stress and hepatotoxicity in rats. J. Biochem. Mol. Biol, 2006, 39, 656-661.
- [51]. Meena MK, Kushwah HK, Ravishankar MB. An experimental evaluation on nephro-protective activity of Nagaradi kashaya AYU 2009; 30, (1):55 -61.
- [52]. Mehul V, Nilesh M, Dharmesh N, Sarav A, Bhaskar V. Assessment of nephroprotective potential of *Sida cordifolia* in experimental medicine. *Scholars Res Lib*, 4(1); 2012: 175-180.
- [53]. Melo DAS, Saciura VC, Poloni JAT, Oliveria CSA, Filho JCFA, Padilha RZ, et al. Evaluation of renal enzymeuria and

cellular excretion as a marker of acute nephrotoxicity due to an overdose of acetaminophen in Wistar rats. *Clin Chem Acta*, 2006; 373: 88-91.

- [54]. Molina-Jijon E, Tapia E, Zazueta C, El Hafidi M, Zatarain-Barron ZL, Hernandez-Pando R, Medina-Campos ON, Zarco-Marquez G, Torres I, Pedraza-Chaverri J. Curcumin prevents Cr (VI)-induced renal oxidant damage by a mitochondrial pathway. *Food & Chem Toxicol*, 2011; FRB-10747: (1-15).
- [55]. Montilla P, Barcos M, Munoz MC, Bujalance in streptozotocin-induced diabetic rats. J. Biochem. Mol. Biol. 2005, 38, 539-544.
- [56]. Movaliya V, Khamar D, Setty M.Nephroprotective activity of aqueous extract of *Aerva javanica*roots in cisplatin induced renal toxicity in rats. *Pharmacologyonline*, 2011; 1:68-74.
- [57]. Mugford CA, Tarloff JB. The contribution of oxidation and deacetylation to acetaminophen Nephrotoxicity in female Sprague-Dawley rats. *Toxicol Lett*, 1997; 93: 15-22.
- [58]. Murthy R, Nataraj H, Ramachandra S. Nephroprotective activity of *Cyanotis fasciculata* against cisplatin induced nephroprotoxicity. Inter Res J Pharmacy. 2(9); 2011: 137- 142.
- [59]. Narendra V, Ameeta A. Nephroprotective activity of ethanolic extract of roots and oleanolic acid isolated from roots of *Lantana camara. Inter J Pharmacol & Ckinical Sci*, 1(2); 2012: 54-60
- [60]. Nelson SD. Mechanisms of the formation and disposition of reactive metabolites that can cause acute liver injury. *Drug Metab. Rev*, 1995, 27,147-177.
- [61]. Nitin M, Ifthekar S, Mumtaz M. Evaluation of hepatoprotective and nephroprotective activity of aqueous extract of Vigna munga on rifamycin

induced toxicity in albino rats. *Inter J Health and Allied Sci*, 1(2); 2012: 85-91.

- [62]. Okwosa C, Achukwu P, Nwachukwu D, Eze A, Azubuike N. Nephroprotective activity of stem bark extracts of *Canarium schweinfurthii* on acetaminophen induced renal injuries in rats. *J College Med*, 14(1); 2009.
- [63]. Palani S, Raja S, Kumar RP, Jayakumar S, Kumar BS. Therapeutic efficacy of *Pimpinellatirupatiensis* (Apiaceae) on acetaminophen induced nephrotoxicity and oxidative stress in male albino rats. *Inter J PharmTech Res*, 2009; 1 (3):925-934.
- [64]. Palani S, Raja S, Kumar RP, Parameswaran P, Kumar BS. Therapeutic efficacy of Acoruscalamuson acetaminophen induced nephrotoxicity and oxidative stress in male albino rats. Acta Pharm Sciencia, 2010; 52: 89-100.
- [65]. Palani S, Raja S, Naresh R, Kumar B. Evaluation of nephrpprotective, diuretic and antioxidant activities of *Plectranthus amboinicus* on acetaminophen induced nephrotoxic rats. *Toxicol Mechanisms and Methods*, 20(4); 2010: 213-221.
- [66]. Palani S, Senthilkumar B, Kumar RP, Devi
 K, Venkatesan D, Raja Sathendra E.Effect
 of the ethanolic extract of *Indigoferabarberi* (L) in acute
 Acetaminophen-Induced Nephrotoxic
 Rats. Adv Biotech, 2008; (9): 28-31.
- [67]. Paller MS, Drug induced nephropathies. *Med Clin North Am*, 1990; 74 (4):909-917.
- [68]. Peesa JP. Nephroprotective Potential of Herbal Medicines: A Review. *Asian J. Pharm. Tech.* 2013; 3(3), 115-118.
- [69]. Pracheta P, Sharma V, Singh L, Paliwal R, Sharma S, Yadav S, Sharma
 S.Chemopreventive effect of hydroethanolic extract of *Euphorbia neriifolia*leaves against DENA-Induced renal carcinogenesis in mice. *Asian Pacific J Cancer Prev*, 2011; 12:677-683.

- [70]. Prajapathi, Purohit, Sharma and Kumar, AHand Book of Medicinal plants, Jodhpur,Agrobios India. 1st edition. 2003.
- [71]. Pratibha S, Man Mohan, Lakhu D. Nephroprotective activities of root extracts of Andrographis paniculata in gentamycin induced renal failure in rats: A time dependent study. Scholars Res Lib, 1(2); 2009: 67-73.
- [72]. Presscott L. Oral or Intravenous N-Acetylcysteine for Acetaminophen poisoning? Ann Emerg Med, 2005; 45: 409-413.
- [73]. Priyadarsini G, Kumar A, Anbu J, Ashwini A, Ayyasamy S. Nephroprotective activity of decoction of *Indigofera tinctoria* against cisplatin induced nephropathy in rats. *Inter J Life Sci & Pharma Res*, 2(4); 2012: P 56-P 62.
- [74]. Pushpagadan P, Kumar B. Ethnobotany, CBD, WTO and the Biodiversity Act of India, Ethenobotany, 2005; 17:2-12.
- [75]. Qazi Zaid A, Nasreen J, Ghufran A, Tajuddin. Nephroprotective effect of Kabab chini (*Piper cubeba*) in gentamycin induced nephrotoxicity. *Saudi J Kidney Diseases & Transplant*, 23(4); 2012: 773-781.
- [76]. Ramya Pydi. Nephroprotective medicinal plants-A review. Inter J Universal Pharm & Life Sci. 1(2); 2011: 266- 281.
- [77]. Ranjan R, Swarup D, Patra RC, Vikas C. *Tamarindusindica* L. and *Moringaoleifera* M. Extract administration ameliorates fluoride toxicity in rabbits. *Indian J Exp Biol*, 2009; 47 (11): 900-905.
- [78]. Ray SD, Mumaw VR, Raje RR, Fariss MW. Protection of AAPinduced hepatocellular apoptosis and necrosis by cholesteryl hemisuccinate pretreatment. J Pharmacol Exp. Therap, 1996, 279, 1470-1483.
- [79]. Sadzuka Y, Shoji T, TakinoY. *Toxicol. Lett*, 1992; 62: 293-300.
- [80]. Sahoo Himanshu, Swain Sudhanshu, Nandy S, Sagar, Bhaiji A.

Nephroprotective activity of ethanolic extract of *Elephantophus scaber* leaves on albina rats. *Inter Res J Pharm*, 3(5); 2012: 246-250.

- [81]. Sarumathy K, Dhana M, Vijay T, Jayakanthi J. Evaluation of phytoconstituents, nephroprotective and antioxidant activities of *Clitoria ternatea*. *J Appl Pharm Sci*, 1(5); 2011: 164-172.
- [82]. Saumya R, Satyaranjan M, Sabuj S, Prasana L. Nephroprotective effect of Bauhinia variegata whole stem extract against cisplatin induced nephropathy in rats. Indian J Pharmacol, 43(2); 2011: 200-202.
- [83]. Schrier RW, Gottschalk CW. Disease of kidney, 5thed, 2, Published by Little Brown & Co, 1993; 1031-1165.
- [84]. Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM, Mingeot-Leclercq MP. 2008. Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. *Apoptosis*, 13, 11-32.
- [85]. Shanmukha I, Abubaker S, Gupt K, Majam K, Ramachandra S. Antioxidant and Nephroprotective activity of Spathodea campanulata bark against gentamycin induced nephrotoxicity. Pharmacology online, 1; 2010: 666-675.
- [86]. Shelke TT, Kothai R, Adkar PP, Bhaskar VH, Juvale KC, Kamble BB, Oswal R J. Nephroprotective activity of ethanolic extract of dried fruits of *Pedalium murex* Linn. J Cell & Tissue Res, 2009; 9(1):1687-1690.
- [87]. Shelkea T, Bhaskarb V, Adkara P, Jhaa U, Oswala R. Nephroprotective activity of ethanolic extract of stems bark of *Crataeva nurvula*. Inter J Pharm Sci & Res,. 2(10); 2011: 2712-2717.
- [88]. Slitt A.M.L, Dominick P.K, Roberts J.C, Cohen S.D. Effects of ribose cysteine pretreatment on hepatic and renal Acetaminophen Metabolite formation

and glutathione depletion. *Basic Clin Pharmacol Toxicol*, 2005; 96: 487-494.

- [89]. Sreedevi A, Bharathi K, Prasad KVSRG. Effect of *Vernoniacinerea*aerial parts against Cisplatin-induced nephrotoxicity in rats. *Pharmacologyonline*, 2011;2: 548-555.
- [90]. Sudhavani V, Chinni Krishnaiah V, Raghu M, Raghavendra H, Ranganayakulu D. Nephroprotective activity off *Merremia emarginata* B against cisplatin induced nephrotoxic rats. J Adv Drug Res, 1(1); 2010: 27-34.
- [91]. Surendra K, Pareta, Kartik, Patra C, Harwansh R, Kumar M, Prasad K, Meena. Protective effects of *Boerhaavia diffusa* against Acetaminophen -Induced nephrotoxicity in Rats. Pharmacology online, 2011; 2:698-706.
- [92]. Suzuki SS, Takamura J, Yoshida Y, Shinzawa, Niwat, Tamatani SR. Comparison of gentamicin nephrotoxicity between rats and mice. *Camp. Biochem. Physiol.* 1995, 1, 15-28.
- [93]. Swathi, Sreedevi, Bharathi. Evaluation of nephroprotective activity of fruits of *Ficus hispida* on cisplatin induced nephrotoxicity. *Pharmacog J*, 3(2); 2011: 62-68.
- [94]. Taayade, S. K, Patil DA. Ethenomedicinal wisdom of tribals of Nandurbar districts (Maharashtra). Nat Prod Rad, 2006; 5 (1):64-69.
- [95]. Talele BD, Mahajan RT, Chopda MZ, Nemade NV. Nephroprotective plants: A review. *Int J Pharm Pharm Sci, 2012, 4(1), 8-16*.
- [96]. Trumper L, Monasterolo LA, Elias MM. Probenecid protects against in vitro acetaminopheninduced nephrotoxicity in male Wistar rats. J. Pharmacol. Exp. Therap, 1998, 283, 606-10.
- [97]. Vadivukkarasi Sasikumar, Sudha G.Antioxidant activity and nephroprotective effects of aqueous extract of *Pleurotus*

eous pink edible oyster mushroom. Inter J Pharma & Bio Sci, 2(3); 2011: B 92- B 103.

- [98]. Varghese R, Moideen M, Suhail MJ, Dhanapal CK.Nephroprotective effect of ethanolic extract of Strychnospotatorum Seeds in Rat Models. Res J Pharm Biol & Chem Sci, 2011; 2(3): 521-529.
- [99]. Webster PA, Roberts DW, Benson RW, Kearns GL. Acetaminophen toxicity in children diagnostic confirmation using specific antigen biomaker. 1996, J. Clin. Phamacol, 36, 397-402.
- [100].Welta K, Weissa J, Martinb R, Hermsdorfc T, Drewsa S, Fitzla G, "Ginkgo biloba extract protects rat kidney from diabetic and hypoxic damage. *Phytomed*, 2007; 14:196–203.
- [101].Yadav YC, Srivastava DN, Saini V, Singhal S, Seth AK, Kumar S, Tejas K, Malik AG. Nephroprotective and curative Activity of methanolic extract of *FicusreligiosaL*. latex in Albino Rats Using Cisplatin Induced Nephrotoxicity. *Pharmacologyon line*, 2011; 1: 132-139.
- [102].Yapar K, Kart A, Karapehlivan M, Atakisi O, Tunca R, Erginsoy S, Citil M. Hepatoprotective effect of l-carnitine against acute acetaminophen toxicity in mice. *Exp & Toxicol Pathol*, 2007, 59,121-128.
- [103].Yarnell E, Abascal. Herbs for relieving chronic renal failure. Alter & Compl Ther, 2007; 13(1).18-23
- [104].Yogesh C, Srivastava D, Vipin S, Sarita S, Seth A, Sharad Kumar, Tejas K, Anuj Malik. Nephroprotective and curative activity of methanolic extract of *Ficus religiosa* L. laatex in albino rats using cisplatin induced nephrotoxicity. Pharmacologyonline. 1; 2011: 132-139.
- [105].Yogesh Chand, Srivastav D, Seth A, Gupta
 V, Kuldeep S, Sharad Kumar.
 Nephroprotective and curative activity of
 Lepidium sativum L. seeds in albino rats
 using cisplatin induced nephrotoxicity.
 Pharmacologyonline, 3; 2009: 640-646.